

JES3 White Paper

Written by: Edward E. Jaffe

Last updated: March 3, 2006

 i

Contents

Introduction ..1

JES3 to JES2 Functional Comparison ...1
Overview ..1
JCL Processing..2
Device and Data Set Allocation...4
Job Class Management...5
System Log Management..6
Initiator Management ...6
Workload Balancing...7
Output Management..8
Dependent Job Control ...9
Deadline Scheduling ...10
Health and Performance Monitoring..11
Systems Management ...12
Spool Data Sets ...13
Job Queue Capacities and Limitations ...15
JESplex Member Names ...16
Network Job Entry..16
Shutdown ...17
Customization ..18

JES3 to JES2 Application Availability Comparison ...19
Planned Outage...19
Unplanned Outage ..19
Detecting Errors in the Initialization Stream...20
Production Job Failure Recovery/Restart ..20

JES3 to JES2 Performance Comparisons ...20
OS/390 V2R7 Performance Comparison ...21
OS/390 V2R9 Performance Comparison ...24
Performance Analysis ..27

JES3 to JES2 Comparison of Software Licensing Costs...29

Summary ..30

 1

Introduction

IBM's Job Entry Subsystem (JES) is a required and strategic part of the
z/OS operating system. IBM offers two JES choices: JES2 and JES3.
JES3 is the considered the premium choice and incurs additional license
fees.

Fifteen years ago, the differences between the JESes were more obvious
than they are today. JES3 was originally developed to assist installations
with the need to manage multiple MVS images.

Today, JES3 functions such as multi-system consoles, automatic tape
sharing, dynamic initiators and workload balancing can be provided by
the operating system itself and are, therefore, available to installations
running JES2. This has left some JES3 installations wondering whether
the premium they pay in licensing fees to run JES3 is still worthwhile.

The purpose of this document is to provide an up-to-date list of JES3’s
intrinsic features and an analysis of the associated additional licensing
costs in order to help installations justify their JES3 strategy.

Every attempt has been made to present only factual information in this
document. It has been reviewed by numerous individuals, including
representatives from IBM’s Washington Systems Center in Gaithersburg,
Maryland. However, software environments and capabilities change over
time and some of the information presented here may become incorrect
or obsolete. If you believe you have discovered an error in this document,
please e-mail the author at edjaffe@phoenixsoftware.com.

JES3 to JES2 Functional Comparison

Overview

At a high level, JES2 and JES3 perform very similar functions. They read
jobs into the system, manage initiators, process output, purge jobs from
the system, and so forth. However, there are significant differences in
their processing paradigms, especially noticeable when running a multi-
image configuration (referred to as a JESplex in this document).

JES2 processing is considered to be independently controlled. Each
JES2 image processes its own job input, job scheduling and job output.

JES2 uses a contention-based paradigm for managing a multi-image
workload. Each image “wakes up” periodically and attempts to serialize
the JES2 checkpoint using a hardware serialization technique. The image
that succeeds carries out job and output scheduling activities. The others
go back “to sleep” waiting for another chance. There is no cooperative
decision-making process. The order in which activities occur and on
which images is random.

 2

By contrast, JES3 processing is considered to be centrally controlled.
One image is designated as the focal point for the entry and distribution
of jobs and for the control of resources needed by the jobs. That image,
called the global processor, distributes work to itself and the other images
in the configuration, known as local processors. It is from the global
processor that JES3 manages jobs and resources for the entire JESplex,
matching jobs with available resources.

JES3 manages processors (images), I/O devices, volumes, and data. To
avoid delays that result when these resources are not available, JES3
ensures that they are available before selecting the job for processing.
Using a centralized approach, JES3 can make informed and complex
decisions about job scheduling and placement.

JCL Processing

Detecting JCL Errors

When Job Submitted to Execute

JCL errors are detected by two different processes. The first process is
known as JCL conversion. The second process is known as JCL
interpretation. Most JCL errors are detected during this latter process.

Both JES2 and JES3 perform JCL conversion soon after a job is placed
into the job queue.

JCL interpretation in a JES3 environment occurs immediately after
conversion, providing instantaneous feedback when a JCL error is
detected.

JCL interpretation in a JES2 environment doesn’t occur until after the job
is selected and placed into an initiator for execution. In an environment in
which job selection takes time, this can negatively impact user
productivity.

Figure 1 depicts this difference in JCL processing.

 3

Job
Submitted

Conversion

JES3 JCL
Interpretation

JCL Error
Reported to
JES2 User

JES2 Job Waits
for Selection

JCL Error
Reported to
JES3 User

JES2 Job
Selected

JES2 JCL
Interpretation

Time

Figure 1 — Detecting JCL Errors

When Job Submitted for JCL Syntax Checking Only

When TYPRUN=SCAN is specified on the job card, the job is checked for
JCL errors only. It is not initiated or executed.

Because JES2 does not call the MVS interpreter, it cannot check the JCL
for parameter value errors and excessive parameters. Bad specifications,
such as DISP=(,CATALG), will not be detected by JCL scanning in a
JES2 environment. Such errors will be detected only after the job is
selected and placed into an initiator for execution.

Because it invokes the MVS interpreter, JCL submitted to JES3 with
TYPRUN=SCAN will receive parameter value and excessive parameters
checking along with all of the other processing performed by JES2. Bad
specifications, such as DISP=(,CATALG), will be detected immediately
and can be corrected by the programmer before the job is submitted for
execution.

Offloading JCL Processing

Most JES3 installations make use of Converter/Interpreter Functional
Subsystems. A C/I FSS runs in its own address space and performs both
JCL conversion and interpretation functions. The advantages to using C/I
FSS address spaces are:

• C/I FSS address spaces offload much of the overhead caused by
converter/interpreter processing from the JES3 address space. A
dispatching priority (or goal) can be established for a C/I FSS that is
lower than the priority assigned to JES3. This allows the high-priority
JES3 address space to concentrate on important functions such as
job scheduling (crucial to overall system throughput), without being
impacted by relatively expensive but less important JCL processing.

 4

• The MVS converter and interpreter can consume large quantities of
the Scheduler Work Area (SWA) and storage in subpool 0. The use of
C/I FSS address spaces provides considerable virtual storage
constraint relief for the JES3 address space.

• Because it is a dedicated to a single purpose, a C/I FSS can process
more jobs at a time than the JES3 address space can handle. There
is no practical limit on the number of C/I FSS address spaces that
may be defined to execute simultaneously in the JESplex, though it’s
likely an installation will define no more than it actually needs to
effectively handle its peak job submission workload.

JES2 provides no way of offloading or lowering the priority of the JCL
processing tasks it performs. All MVS conversion processing occurs
within the JES2 address space itself. (As discussed earlier, MVS
interpretation in a JES2 environment is not performed until a job is placed
into an initiator. Offloading this aspect of JCL processing is not relevant).

Device and Data Set Allocation

JES2 performs no device or data set allocation of its own. It relies strictly
on MVS allocation. A job's requirements are not known until JES2 selects
the job for execution, and a system initiator begins the step allocation
process. At each job step, MVS allocation attempts to satisfy the
requirements for the step, in contention with every other job step currently
executing on the same image or sysplex. If the requirements cannot be
met, MVS allocation gives the operator the option of canceling the job or
allowing it to wait for resources. Thus, in a JES2 environment, there may
be jobs executing and other jobs waiting for resources.

The jobs waiting in MVS allocation hold critical resources (a system
initiator, an address space, data sets, and possibly devices). Holding
these resources longer than necessary makes it difficult to determine how
many initiators should be started to keep the system fully utilized,
because at any given time, an unknown number of initiators may be
waiting in MVS allocation. Often, JES2 installations use ENQ monitors to
detect lengthy contention situations and cancel one or all of the jobs
involved in the conflict.

MVS allocation occurs for one job step at a time. If a data set is not found,
a JCL error occurs and the job is terminated. Such a JCL error could
occur hours after the job starts executing, creating unnecessary surprises
and can be an impediment to user productivity.

With JES3 pre-execution setup, the resources (data sets, devices, and
volumes) that a job requires are already set up when the job is passed to
MVS for execution. There should never be an idle initiator caused by a job
waiting for these resources. Setup occurs while a job is in the JES3
address space, and the only system resource used while the job is
waiting is the JES3 queueing space. JES3 helps the system make
maximum use of devices and allows jobs to run in a minimum amount of

 5

time once they are passed to the system for execution. In addition, JES3
allocates devices for jobs with higher priorities before jobs with lower
priorities. This helps ensure that high-priority jobs will not be delayed for
resources held by low-priority jobs.

JES3’s locate processing ensures all data sets referenced by a job exist
before the job is scheduled. If any data sets are missing, a JCL error is
reported. Locate processing occurs as part of converter/interpreter
processing. This helps ensure jobs do not run for hours before ultimately
failing with a JCL error. Once a job has undergone C/I processing, the
submitting user can feel confident the job will not fail due to a JCL error,
regardless of when it finally executes.

JES3’s main device scheduler requests and verifies the mounting of the
initial volumes a job requires on each device (e.g., tape devices) before a
job can be selected for execution (unless deferred volume mounting is
specified in the JCL). This further delays unnecessary use of an initiator
until the operator has had time to find and mount the necessary tapes.

JES3 device setup is available only for devices that are defined in JES3’s
initialization stream. Devices that are unknown to JES3 will be allocated
using normal MVS allocation as in JES2.

JES3 data set setup is available for SMS-managed data sets, whether or
not the devices are defined in the JES3 initialization stream. JES3 uses an
SMS callable API to perform setup for SMS-managed data sets. SMS
ensures that JES3 knows which systems are eligible to run a job, based
on the SMS volume and storage group status for any SMS-managed data
sets required by the job.

Job Class Management

JES3 allows for up to 255 job classes. JES3 job class names may be up
to eight characters in length, allowing for mnemonic, self-documenting
names like PRODWORK, DEVWORK, IMSA, etc. to be used. JES3 job
classes may be grouped together into up to 255 job class groups. Job
class groups allow operators and system programmers to define and
control many job classes in a single operation.

JES3 also provides job class constraints. These optional parameters
influence the way jobs are scheduled. TDEPTH limits the total number of
jobs in a class that will be scheduled simultaneously. TLIMIT allows the
number of jobs running in one class to affect the number of jobs that can
be scheduled in another class. These constraints are applied at a
JESplex level. MDEPTH and MLIMIT are similar to TDEPTH and TLIMIT,
but are applied to select z/OS images.

JES2 allows only 36 job classes (A-Z, 0-9) to be defined. Each job class is
only one character in length. One class constraint (maximum execution
count) was added with the WLM-managed batch initiator support. This
parameter is similar in function to JES3’s TDEPTH.

 6

System Log Management

JES3 produces a JESplex-wide, merged system log, known as the DLOG.

JES2 produces a unique system log for each image in the JESplex,
making chronological archiving and problem determination more difficult.

The Sysplex Operations Log (OPERLOG), a sysplex-wide merged system
log, intended to replace the traditional system log, is infrequently used
because:

• Browsing OPERLOG is slow when compared to browsing the
traditional system log.

• OPERLOG is sysplex-wide in scope. When multiple JESplexes exist
within a sysplex, log entries from other JESplexes are interleaved with
log entries from the current JESplex.

• For a multi-image sysplex, OPERLOG requires the use of a coupling
facility (CF). That is, OPERLOG will not work in a multisystem base
sysplex.

Initiator Management

JES2 provides only static initiator management. Initiators are defined and
controlled on an individual image basis.

JES3 provides JESplex-wide dynamic initiator management. Initiators are
controlled indirectly by changing policy parameters used by JES3’s
generalized main scheduler (GMS).

Workload manager (WLM) batch initiator management is intended to
alleviate many of the difficulties associated with planning and controlling
JES initiators. Its main benefit to JES2 installations is dynamic initiator
management itself. For JES3, the primary benefit is the introduction of
real-time workload analysis to dynamic initiator management.

Even when using WLM-managed batch initiators, JES3 provides superior
functionality. For example:

JES2 provides no way to limit the number of jobs initiated on any
particular image. JES2 installations typically resort to assigning a default
WLM scheduling environment to every batch job entering the system. By
manipulating the state of a resource referenced by every scheduling
environment, they can achieve the result of completely protecting an
image from WLM-managed batch job initiations.

 7

JES3 handles this problem much more directly. WLM-managed batch
initiators for a job class group will not be started on any image where the
job class group is disabled. Disabling a job class group on an image can
be done with a single command. To make the change permanent, the
initialization stream can be updated to indicate no execution resources
should be created for that job class group on the specified image.

If an “all-or-nothing” approach is not acceptable, flexible rules for
influencing WLM-managed batch initiations may be specified using JES3
class constraints, described in the section entitled “Job Class
Management.”

Workload Balancing

It is competition, not cooperation, which best describes JES2’s shared
spool algorithm. While a JES2 member holds the checkpoint lock, it
attempts to schedule all eligible work until it runs out of available
resources, there is no more work to be scheduled, or it has held the
checkpoint lock for too long of a time. This algorithm can result in
workload-scheduling imbalances.

For example, if there are ten idle initiators per system and ten jobs are
submitted at the same time, those ten jobs will usually be converted and
initiated on the same system, regardless of the available capacity of other
systems in the JESplex. This pattern can be observed even when WLM
batch initiator management is used. Remember, JES is responsible for
assigning jobs to ready initiators. WLM simply controls the number of
available initiators on each system for each service class. As long as
there are enough idle initiators to satisfy the needs of the jobs waiting for
execution, a JES2 image will attempt to initiate them all on the current
system.

By contrast, JES3 distributes workload across the JESplex in a balanced
manner. The decision as to where and when to schedule a job is made by
JES3 running on the global processor, which is aware of exactly which
jobs are currently running, the systems they are running on, and how
many initiators (JES- or WLM-managed) are available on each system.

At a programming level, JES3’s job scheduling logic is also competitive.
When a job moves to the GMS select queue, the GMS Supervisors for
each potentially eligible system are simultaneously posted (made
available for dispatching by JES3’s Multi-Function Monitor). The key
difference is that the dispatching of the GMS Supervisor tasks is rotated
by the MFM, within internal priorities established by a load-balancing
algorithm, and each GMS Supervisor task selects only one job before
giving up control to the MFM, thus allowing other GMS Supervisor tasks to
be dispatched. In addition, the internal dispatching priority of a GMS
Supervisor task is reset according to the load-balancing algorithm
whenever a job is selected or an initiator is stopped or started on that
system. (When only WLM-managed initiators exist, all priorities remain

 8

equal so dispatching is strictly rotated.) This technique ensures that job
initiations are properly balanced throughout the JESplex at all times.

In an attempt to address JES2’s workload balancing issues, IBM made
some changes to z/OS V1R4 WLM. JES2’s propensity to over-initiate a
single system can be throttled by reducing the number of initiators
available to that system. z/OS V1R4 WLM is more aggressive in reducing
the number of WLM-managed initiators on overworked systems. After this
change, the same problems with JES2 exist, but their impact is reduced.

JES3 continues to provide better workload balancing both before and
after z/OS V1R4.

Output Management

There is a great deal of overlap in the capabilities of the JESes in this
area, though neither is a complete subset of the other. This is to be
expected since output management is one of the most fundamental
responsibilities assigned to JES and customer expectations with respect
to output handling are similar in all environments.

Nevertheless, there are some significant differences. For example, JES3
provides the ability to change the number of copies that will be printed for
a data set waiting on a queue, whereas JES2 does not. On the other
hand, the Scheduler Facility Services SSI call (SSI 70), which allows
system management utilities to modify the contents of SWB-maintained
information such as Name and Address, is supported by JES2 and not by
JES3 (though requirement MR0411002334 exists to address this issue for
JES3).

The two most-important differences between the JESes, in terms of output
management, are described in the following topics.

Output Grouping

JES2 manages output at a group level. An output group is a named
resource, which may be referred to in operator commands, and may
consist of any number of data sets with similar output characteristics.
Changes made to existing output attributes are performed at the output
group level. JES2 does not support changes to output characteristics at
the individual data set level.

JES3 also manages output at a group level. However, JES3’s groupings
are not named resources. They are simply a convenient assemblage of
data sets with like output characteristics. Because JES3’s groups are not
named resources, they are not referenced in operator commands.
Instead, operator commands refer to output by data set name and/or the
values of various output characteristics, such as destination, forms, or
output class. A single operator command may change a single data set,
multiple data sets within a job, or multiple data sets in a mixture of jobs.

 9

After changing output characteristics for one or more data sets in a job,
JES3 regroups the data sets as necessary. During this regrouping
process, new groups may be dynamically created and existing groups
may enlarged, reduced, or removed completely.

Output Attribute Inheritance

In JES3, many attributes for controlling output data set handling may be
associated with a sysout class. Output created in a class automatically
inherits those attributes. This capability can be useful for standardizing
and automating output handling because the attributes are assigned at
an installation level. This simplifies production JCL and allows changes to
be made without user involvement.

For example, an installation could assign a destination of NEWYORK to
sysout class N. Output created in class N would be automatically sent to
NEWYORK for printing. There is no need for users to explicitly specify
DEST=NEWYORK for output created in class N. If conditions changed
such that class N printing was to be handled locally or at a node other
than NEWYORK, only the definition for sysout class N in the JES3
initialization stream would be modified.

JES2 sysout class definitions do not include output-handling attributes.
Only the queue type and disposition options may be associated with a
sysout class. All output handling specifications are provided explicitly
through JCL, dynamic allocation text units, or user exits.

Dependent Job Control

JES3 provides a means of coordinating the processing of jobs called
Dependent job control (DJC). DJC allows jobs to be executed in a
specific order, as determined by job dependencies. Job dependencies
may occur because of data dependencies or may be defined to achieve
better device utilization or to manage job streams. (DJC has an MVS
counterpart for conditional execution of job steps within a single job.)

DJC requires no advance preparation with JES3 initialization statements.
Application programmers specify all relationships between jobs on JES3
//*NET control statements they submit with the affected jobs. These
relationships define the predecessor jobs that must complete before a job
is scheduled for execution. Contingencies in case of predecessor job
failure are defined as well.

A collection of dependent jobs is called a DJC network. A DJC network is
a named entity within the JESplex and may be queried, modified, or
canceled.

In a DJC network, some jobs may execute (serially or in parallel) while
others remain unscheduled, waiting for predecessor job(s) to finish. A
DJC job becomes eligible for scheduling when its hold count reaches

 10

zero. As each job completes, it decrements the hold count for one or
more dependent jobs in the DJC network. A job may also decrement the
hold count for jobs in other DJC networks. Dependencies between DJC
networks may be established in much the same way as job
dependencies within a single DJC network. In addition, there is no
requirement that all of the jobs comprising a DJC network be submitted
together. The jobs may be submitted by different users, in any order, and
at various times throughout the life of the DJC network.

Although small and medium installations can use DJC to effectively
coordinate their production batch workloads, large installations typically
do not. Rather, large installations normally use one of several well-known
job scheduling software products for managing complex production
batch activity. However, this does not mean DJC remains unused in those
environments.

Generally, job scheduling software products are used for production
batch jobs only. These products often require a significant amount of
administration to define the jobs and their dependencies, an effort not
usually warranted for non-production jobs. In addition, administration of
these products is usually limited to production coordinators. For this
reason, system programmers and end users often turn to DJC for their
non-production batch job coordination needs.

JES2 provides no job coordination facilities. The most common solution
for coordination of non-production batch jobs in a JES2 environment is to
have the last step of one job submit another job by copying its JCL to an
internal reader. In this way, jobs may be executed one-by-one using job-
step-level condition code checking to determine if the next job should be
submitted.

Deadline Scheduling

Deadline scheduling is a facility that allows users to schedule a job to
execute at (or by) a certain time (wall clock time or number of minutes or
hours relative to job submission time) on a specific date or periodically at
a given time every week, month, or year.

The installation defines up to 36 deadline-scheduling algorithms (A-Z and
0-9) and communicates the behavior of these algorithms to its users.
Deadline-scheduling algorithms specify such things as the initial priority
change, the lead-time for the job (i.e., the amount of time prior to the
specified deadline that the initial priority change will be made), and
parameters such as priority increment and frequency of incrementation.

The user’s JCL specifies the deadline time and date (or cycle relative to
week, month or year) and indicates which deadline-scheduling algorithm
is to be used.

 11

When the lead-time prior to the deadline passes, the job’s priority is set to
the initial priority value. After that, the priority is incremented according to
the aging parameters in the deadline-scheduling algorithm.

Typically, a deadline job is submitted into a held priority (e.g., priority
zero). As the deadline approaches, the job’s priority is raised to the initial
value and then priority aged if not immediately selected for execution.
Deadline scheduling works equally well for jobs intended for JES-
managed or WLM-managed initiators.

Like DJC (discussed previously), deadline scheduling for production jobs
can be provided through expensive commercial job scheduling software
products. But the same limitations apply. Such products often require
significant administration work and the capability of doing so is usually
limited to production job coordinators. JES3 deadline scheduling is the
obvious choice for system programmers and end users requiring
scheduling of non-production batch jobs at a specific time.

JES2 provides no deadline scheduling facility.

Health and Performance Monitoring

Traditional monitors, such as IBM’s Resource Measurement Facility,
provide only limited value for tuning subsystems like JES2 and JES3
because they are unaware of specialized internal JES task and queue
structures. In order to properly identify and correct bottlenecks in JES
processing, the system programmer must perform monitoring using JES-
provided facilities.

JES3 provides three monitoring facilities to assist the system programmer
in identifying problem situations:

The first is the JES3 Loop and Wait Monitor. This monitor is always
present and ensures the two JES3 main tasks are not looping or in an
unintended MVS WAIT. If a main task loop or wait is detected, JES3
issues a WTOR allowing the operator to a) wait for a specific interval
before taking further action or b) terminate the thread (drive its JESTAE
routine) and give control back to the MFM.

The second is the JES3 Monitor DSP. This monitor can be set to examine
specific resources and queues at specific intervals. For example, you
could specify that you want to monitor the C/I FSS queue every minute for
jobs that have been waiting for two minutes or more. JES3 starts the
Monitor DSP and monitors various queues and resources automatically. If
any of the conditions you (or JES) specify are detected, operator
messages are issued. Unlike the Loop and Wait Monitor, the Monitor DSP
does not directly provide the operator with a repair action for the reported
anomalies.

The third is the JES3 Monitoring Facility (JMF). JMF samples JES3
resources and queues, gathers and stores raw information, statistically

 12

analyzes the information, and creates printed reports, SMF records, or
both at specific intervals. The reports created by JMF can greatly assist
the JES3 system programmer to monitor, diagnose, and tune a JES3
system or JESplex. Resources monitored by JMF include spool data
management, CPU and storage, internal JES3 functions, device
scheduling, and job throughput.

Monitoring in JES2 is performed by a single facility known as the JES2
Health Monitor. Unlike JES3 monitors, which were designed to run as part
of the JES3 address space, the JES2 Health Monitor runs as a separate
address space and all sampling occurs using cross memory services.

When the JES2 Health Monitor detects a problem, such as a suspected
loop or wait in the main task, the operator is alerted. However, no repair
facility is provided. JES2’s Health Monitor is strictly an information tool.

The JES2 Health Monitor continually gathers statistics similar to those
gathered by JES3’s JMF. Operator commands exist to display the current
hour or full 72-hour history of resource utilization and CPU sampling.
Unfortunately, the reports are directed only to consoles and/or the system
log. No printed reports are created. No SMF records are produced.

Systems Management

Users in a JES2 environment generally use IBM’s SDSF to view and
control jobs and other system resources. Likewise, users in a JES3
environment generally use PSI’s (E)JES to perform similar functions in
their environments.

Many of the differences between these products can be attributed to
differences in the underlying capabilities of the two JESes. Other
differences can be attributed strictly to the products themselves.

Some of their differences are described in the topics that follow.

Scope of View and Control

Both SDSF and (E)JES provide JESplex-wide scope for the information
they display, including buffered sysout data from jobs running on other
systems. (E)JES utilizes sysplex services (XCF and, in a parallel sysplex,
XES) to provide this functionality. SDSF’s implementation requires IBM’s
MQSeries for z/OS to connect SDSF servers within the JESplex. This
implementation has several drawbacks:

• XCF is an integral part of the z/OS operating system. There are no
additional costs associated with its use. By contrast, MQSeries is a
relatively expensive product. Inspection of IBM software pricing at the
time of this writing reveals prices for MQSeries to be between six and
eight times those for SDSF, depending on processor capacity. It is

 13

unlikely that customers, with no enterprise-wide need for MQSeries,
could justify licensing it based solely on SDSF’s requirements.

• XCF signaling performance is better than MQSeries.

• The use of MQSeries involves significant additional configuration work
for the system programmer. MQSeries must be configured to allow
SDSF to create and use the necessary queues. The security product
must be updated to protect the queues and grant end users (SDSF
clients) proper access to them. Worst of all, SDSF requires that you
configure server groups, a list of system and associated server
names in your ISFPRMxx member, so that all of the necessary pipes
can be created. The system programmer must essentially redefine
the JESplex all over again for SDSF, and keep this information
synchronized with JES2’s definitions when the configuration changes.
A well-designed XCF implementation should require no additional
configuration work.

Usability

There are numerous usability differences between the two products. A
discussion of these differences is beyond the scope of this document.

Product Extensions

The (E)JES Extract Post-Processor package provides product extensions
such as those for transmitting copies of sysout to other users via NJE, ftp,
or e-mail, and provides a framework for installations to write their own
product extensions. SDSF has no equivalent. The only way to extend its
capabilities is through direct modification of the code and/or through user
exits.

Spool Data Sets

Partitioning

The JES2 spool is one large multi-volume repository. The installation has
no control over where sysin and sysout data sets will be allocated, with
the exception that spool fencing may be used to limit the total number of
volumes on which a single job’s spool records may be allocated.

The JES3 spool may be organized into partitions. Spool partitions may be
assigned by z/OS image, job class, sysout class, or user exit decision.
There is always a default partition. Named spool partitions may optionally
designate another named spool partition (or the default partition) as an
overflow partition, to be used in the event the original partition becomes
full. Effective use of spool partitions can ensure a guaranteed amount of
spool space is available to your most important work.

 14

Architecture

Data Set Organization/Placement

To define spool volumes and data sets to JES2, a four-character DASD
volume ID prefix is specified in the initialization stream. During
initialization, JES2 searches all online DASD volumes in the system and
compares their volume IDs with the specified four-character prefix. Any
volumes matching the specification are then searched for a fixed data set
name (normally SYS1.HASPACE).

This arcane approach is confusing and restricts the names of the
volumes where spool data sets may reside. Since every spool data sets
has the same name, only one may be allocated on any particular volume
and only one of them may be cataloged. Familiar data set utilities (such
as ISPF 3.4) cannot be used to easily list and process JES2 spool data
sets.

In JES3, each spool data set is given a unique name and may be
cataloged. As with any other z/OS product, the data set names — not the
volume names — are used to locate the data sets. Spool data sets may
appear on volumes of any name and more than one spool data set may
be allocated on a volume. Familiar, data set utilities (such as ISPF 3.4)
may be used to easily list and process JES3 spool data sets.

Addressing

JES2 uses a 4-byte value to identify a unique spool block within the
configuration. The format of this value depends on the type of data set:

• For basic format data sets that use absolute addressing (the only kind
prior to z/OS V1R2), the format is MTTR, where M is the 8-bit extent
number, TT is the 16-bit track number relative to the start of the
volume, and R is the 8-bit physical record (block) number within a
track. These data sets must be contained within the first 65,535 tracks
of the volume.

• For basic format data sets that use relative addressing (introduced
with z/OS V1R2), the format is MTTR, where M is the 8-bit extent
number, TT is the 16-bit track number relative to the start of the data
set, and R is the 8-bit physical record (block) number within a track.
These data sets may reside anywhere on the volume, but must not
exceed 65,535 tracks in size.

• For large format data sets (introduced with z/OS V1R7), the format is
MTTtr, where M is the 8-bit extent number, TTt is the 20-bit track
number relative to the start of the data set, and r is the 4-bit physical
record (block) number within a track. These data sets may reside
anywhere on the volume and may be up to 1,048,574 tracks in size.

 15

In all cases, the eight-bit M field limits the maximum number of JES2
spool data sets to 253 (the checkpoint data sets use the other two
extents).

It’s clear that JES2 is operating under an architectural constraint with
respect to this spool address format. To support data sets larger than
65535 tracks, they were forced to reassign four bits from the record
number field to the track field. The approach worked because the largest
3390 volumes in use today support only 984,040 tracks. Unfortunately,
such fundamental changes will undoubtedly result in some trauma as
they necessitate changes in IBM code, ISV code, and user-written code.

JES3 uses a 6-byte value to identify a unique spool block within the
configuration. The format of each value is MMRRRR, where MM is the 16-
bit extent number and RRRR is the 32-bit physical record (or block)
number relative to the start of the volume. A spool data set may occupy
space through block 232-1, relative to the start of the volume. This
addressing scheme supports approximately 356 million tracks per DASD
volume, assuming a 4K spool block size and a track size equal to today’s
3390 devices. Such a device would have over 7,100 times the capacity of
a 3390-3 (approximately 18.4 TB)!

The 16-bit MM field architecturally limits the maximum number of JES3
spool data sets 65,535. JES3 currently enforces an arbitrary limit of 1,024.

Job Queue Capacities and Limitations

z/OS V1R2 JES2 and JES3 were enhanced to support an increased job
number range up to 999,999. The details of this support have served to
highlight some of the differences between JES2 and JES3 in terms of job
queueing capacity and architecture.

JES2 works with fixed limits established by the installation. The maximum
allowable values are imposed largely by its checkpoint architecture. In
z/OS V1R2 JES2, the absolute maximum number of jobs in the job queue
is 200,000 and the maximum number of Job Output Elements (JOEs) is
500,000. The good news for JES2 installations is that these limits are
considerably higher than those imposed by prior releases of JES2.

With z/OS V1R2 JES3, the maximum number of jobs in the job queue is
999,999, the same as the upper limit of the job number range and nearly
five times JES2’s upper limit. Other resources, such as Output Scheduler
Elements (OSEs), are limited only by the amount of spooling space and
virtual storage available to describe them. An installation need not
concern itself with establishing and monitoring limits on these resources
in a JES3 environment.

 16

JESplex Member Names

JES3 always uses the MVS system name as the name of the member in a
JESplex. This is the same name used by sysplex services, MCS console
commands, and so forth. A system name may be 1-8 characters in
length. JES2 is restricted to four-character JESplex member names. JES2
member names may be derived by applying a substring function against
the true system names.

Network Job Entry

Network Job Entry (NJE) is supported by both JES3 and JES2. For many
years, both have provided support for NJE over BSC and CTC lines as
well as between SNA LUs. JES2’s SNA/NJE support is self-contained
whereas JES3 requires the MVS Bulk Data Transfer SNA/NJE feature to
provide the transport mechanism for its SNA/NJE networking.

z/OS V1R7 JES2 provides support for NJE over TCP/IP. The same support
is provided for JES3 in z/OS V1R8. This support allows both JESes to now
interoperate with other spooling systems (e.g., VM RSCS and
VSE/POWER) that have supported NJE over TCP/IP for some time now.

Network Topology

In NJE parlance, a directly connected or adjacent node is one that has a
line connecting it to the current node. An indirectly connected or non-
adjacent node is one that uses a directly connected node as an
intermediate transmission path. Indirectly connected nodes are popular in
BSC/NJE networks because the expense of providing direct hardware
connections between every node in a large network can be prohibitive.
Indirectly connected nodes tend to be used less frequently in SNA/NJE
and TCP/IP networks since the connections between nodes are not
dedicated hardware devices.

A JES3 node need not understand the topology of the NJE network. It
simply needs to know the names and paths of each node that may
exchange jobs and sysout with the current node. A path is the name of a
directly connected node where jobs and sysout for an indirectly
connected node should be sent. JES3’s algorithm is path-based. This
method of routing NJE work is similar to how routing works in an IP
network; routing decisions are made on each host without any knowledge
of the overall network topology.

Unlike JES3, JES2 networking uses a topology-based algorithm. A JES2
node must be made aware of the physical and logical connections that
exist between other nodes in the network. This information allows the
JES2 node to route jobs and sysout to the proper directly connected
node. Topological definitions can be voluminous. To simplify them, JES2
provides a powerful component known as the Path Manager.

 17

Unfortunately, the Path Manager may not be used to communicate with
non-JES2 nodes such as VM RSCS, JES3, or VSE/POWER.

NJE Performance

JES2 NJE performance can suffer in a multi-image environment. This is
because when one JES2 image queues an NJE-related message to
another JES2 member in the same JESplex, there is no interrupt
mechanism to inform the receiving member that a message exists. The
receiving member periodically reads the shared job queue record and
examines queue information for new messages.

In JES3, all NJE processing is fully event-driven.

Store-And-Forward

Store-and-forward describes what happens in most NJE networks when
data is sent to an indirectly connected node. As NJE data is received at a
node, it is stored in that node’s spool space until the entire job is
received. Once successful receipt is verified, the job is forwarded to the
next directly connected node in the path. JES3 uses the traditional store-
and-forward technique.

The JES2 Path Manager allows data sent between two indirectly
connected JES2 nodes to bypass normal NJE store-and-forward
processing (if desired) when all intermediate nodes are also JES2.
Instead of storing the entire job at each intermediate node, the NJE
packets themselves are routed through each intermediate node until they
reach the destination node. The NJE data is stored only in the spool
space of the sending node and destination node. This feature is useful
when many indirectly connected nodes exist. In the author’s opinion, this
is one of JES2’s most desirable features.

Commands from Remote NJE Nodes

JES2 can be told to accept virtually any command from a remote network
node. This is helpful for coordinating startup, shutdown, and other
activities from a central location.

JES3 accepts only a limited subset of commands from remote NJE nodes
(though SHARE requirement SSJES300351 exists to address this issue for
JES3).

Shutdown

To shutdown JES2 normally, all activities must be quiesced. This means
all address spaces started under the JES2 subsystem (including Unix

 18

System Services forked procedures and APPC transactions), readers,
printers, punches, RJE and NJE lines, etc. must be terminated before
JES2 will successfully shut down. It is sometimes difficult for operators to
determine what activities are preventing a JES2 normal shutdown.

The biggest challenge presented by JES2’s shutdown is in the area of
automation. An experienced human operator will usually determine, by
issuing several commands, what actions to take in order to facilitate a
normal JES2 shutdown. Programming this decision-making process into
automation can be tedious. As new scenarios arise, automation scripts to
shutdown JES2 become increasingly complex.

JES2 provides alternative termination mechanisms that offer faster
shutdowns, but with various caveats and risks. For example, JES2 can be
abended or forced (though forcing JES2 is not recommended unless
JES2’s main TCB is not responding). Another alternative allows JES2 to
be immediately terminated, but requires an IPL before restarting JES2.

For JES3, a normal shutdown always occurs immediately, and all JES3
services are suspended. Should the operator choose to restart JES3
without an IPL using any type of hot or local start, JES3 dynamically
reconnects all suspended requesters. Automating a normal JES3
shutdown is trivial.

Customization

Both JES subsystems allow installations to customize job flow and other
processing. Most customization is performed using IBM-provided user
exits. For more complex customization needs, JES3 has an advantage
because it allows installations to write their own DSPs. JES2 users wishing
to provide additional functionality beyond that allowed by exits must
generally modify the JES2 source code itself, though updates to table-
pairs can often affect a change without any substantial coding effort.

Ensuring the correctness of user exits and other modifications presents a
challenge, even for the most experienced system programmer. Program
flow tracing and interactive debugging capabilities are essential. JES3
provides a DSP called “Dump Core” (DC) that provides these capabilities.
Using DC, a system programmer can locate modules, set and reset
breakpoints (traps) in JES3 or user-written code, inspect and alter main
storage, and format storage- or spool-resident control blocks. There is no
equivalent functionality in JES2.

 19

JES3 to JES2 Application Availability Comparison

Planned Outage

The conditions that bring about a planned outage differ considerably
between the JESes, making it difficult to predict the number of planned
outages that will occur due to an installation’s JES strategy choice.

For example, JES2 requires an outage to add or delete internal readers,
initiators, converter tasks, and NJE nodes, whereas JES3 can add or
delete these resources dynamically. On the other hand, JES2 can change
SWA control block residency dynamically, whereas JES3 requires a hot
start with refresh to perform this task.

JES3 initialization parameters are always JESplex-wide in scope and the
vast majority of them can be updated over a hot start with refresh. This
process entails a restart of the JES3 address space on the global
processor only. Job scheduling and other global functions are
suspended during the restart. Once JES3 is reinitialized, all functions
resume normally and any updates are automatically propagated to the
other systems in the JESplex. For those situations in which a JES3 warm
start is required, a JESplex-wide IPL is required.

For JES2 initialization parameters that can be refreshed over a hot start,
JES2 must be stopped and restarted on each system in the JESplex
where the change is needed. Job scheduling and other JES functions are
suspended during the restart, but only on the affected system(s). Once
JES2 is reinitialized, all functions resume normally. To refresh JES2
initialization parameters requiring a single-member warm start, an orderly
shutdown must first be performed. This requires that all jobs, started
tasks, TSO users, NJE connections, printers, etc. be terminated in an
orderly fashion (see “Shutdown”). Though technically unnecessary, many
installations choose to IPL over a JES2 warm start in order to simplify
operational procedures. If an all-member warm start is required, this
process must be performed for all systems in the JESplex simultaneously.

Unplanned Outage

The recovery considerations after an unplanned system outage in a multi-
image configuration are similar for JES2 members and JES3 local
processors.

If a JES2 member fails while serializing the checkpoint, intervention may
be required to allow the other systems in the JESplex to continue
processing. This is not a consideration for JES3.

When an outage occurs on the JES3 global processor, job scheduling
and other important JESplex-wide functions are inhibited. In a sense, this
can be considered JES3’s Achilles’ heel. A Dynamic System Interchange

 20

(DSI) is required to assign the role of JES3 global processor to another
image in the JESplex, particularly if the outage is expected to be lengthy.
This is not a consideration for JES2.

Detecting Errors in the Initialization Stream

JES3 provides a utility for preemptively checking the initialization stream.
This utility detects syntax errors and many logical errors, and can be run
as a batch job or in the foreground under TSO/E. Many installations use
an ISPF edit macro to check the initialization stream directly from within
an ISPF edit session.

JES2 provides no equivalent utility for checking the initialization stream.
Most JES2 installations start a second copy of JES2 from the console to
check for errors in the initialization stream. JES2 performs basic syntax
checking of the initialization parameters prior to terminating.

Production Job Failure Recovery/Restart

When a production job fails half way through, the restart costs can be
high — in terms of both time and effort. (It’s not always possible to simply
resubmit the job!) By checking for JCL errors and ensuring all needed
data sets are available before the job is queued for selection, JES3 helps
minimize the need for expensive 0’dark-thirty job restart analysis.

JES3 to JES2 Performance Comparisons

IBM does not provide any information comparing performance under
JES2 and JES3. We had no choice but to perform our own analyses.

Two benchmarks were run in different years, using different operating
system releases, and on different hardware. Each was run under
controlled conditions (idle system time). No attempt was made to simulate
real customer production batch workloads or JES configurations.

The first benchmark was run in 1999, in a parallel sysplex consisting of
two OS/390 V2R7 systems running in equally weighted LPARs, with an
ICMF LPAR on a 9672-R22 processor with a 9345 DASD Subsystem. The
second benchmark was run in 2000, in a parallel sysplex consisting of
two OS/390 V2R9 systems running in equally weighted LPARs, with an
ICMF LPAR on a 7060-H30 processor with the S/390 Internal Disk
Subsystem emulating 3390-3 devices.

 21

In each case, both JESes were defined with virtually identical
configurations and initialization specifications. The only exception was
that JES3 setup processing was not disabled.

For JES2, we tested using both DASD and CF primary checkpoints and
used HOLD=50,DORMANCY=50 for the JES2 checkpoint sharing
parameters (JES3 has no equivalent as it is event driven).

OS/390 V2R7 Performance Comparison

Fixed Overhead Comparison

The first experiment was to observe the common storage, CPU, and I/O
overhead associated with each subsystem when there was no activity.
Each system was observed for 15 minutes and the data was extrapolated
to hourly utilization.

The results are shown graphically in the following figures.

Common Storage Utilization (Kilobytes)

5 1 26 26 26 26

1284 1280

2239 2241 2239 2241

0

500

1000

1500

2000

2500

Global Local Member A Member B Member A Member B

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

CSA ECSA

Figure 2 — OS/390 V2R7 Fixed Common Storage Overhead

 22

CPU Utilization (Seconds/Hour)

0 0

14.6 15

19.2 19.8

0

5

10

15

20

Global Local Member A Member B Member A Member B

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 3 — OS/390 V2R7 Fixed CPU Overhead

EXCP/Hour

0 0

4506 4774

0
356

0

1000

2000

3000

4000

5000

Global Local Member A Member B Member A Member B

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 4 — OS/390 V2R7 Fixed EXCP Overhead

Job Processing Comparison

The second experiment measured throughput and resource utilization
required for 100 trivial batch jobs submitted from a TSO/E session. The
jobs wrote three thousand 132-byte records to sysout using IEBDG. Both
JESes had ten pre-started initiators and two converter tasks (C/I DSPs for
JES3) on each system.

When using WLM-managed initiators, we forced WLM to start exactly 20
initiators. This created a pool of initiators approximating the conditions of
the pre-started JES initiators.

The results are shown graphically in the following figures.

 23

CPU Utilization (Seconds)

33.35
37.06

43.25 41.48
46.59

0

10

20

30

40

50

JES Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

JES JESXCF Jobs Total

Figure 5 — OS/390 V2R7 CPU Utilization Running the Benchmark

EXCP

25940
21257 21387 19670 19671

0

5000

10000

15000

20000

25000

30000

JES Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

JES Jobs Total

Figure 6 — OS/390 V2R7 EXCP Totals Running the Benchmark

Average Batch Response Time (Seconds)

3.4

45.75 42.75
47.25 48.9

0

10

20

30

40

50

JES Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 7 — OS/390 V2R7 Batch Response Times Running the Benchmark

 24

Job Throughput Time (Whole Seconds)

205

307 304 320 318

0
50

100
150
200
250
300
350

JES Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 8 - OS/390 V2R7 Job Throughput Times Running the Benchmark

OS/390 V2R9 Performance Comparison

Fixed Overhead Comparison

The first experiment was to observe the common storage, CPU, and I/O
overhead associated with each subsystem when there was no activity.
Each system was observed for 15 minutes and the data was extrapolated
to hourly utilization.

The results are shown graphically in the following figures.

Common Storage Utilization (Kilobytes)

4 1 27 27 27 27

1298 1291

3887 3889 3889 3889

0

1000

2000

3000

4000

Global Local Member A Member B Member A Member B

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

CSA+SQA ECSA+ESQA

Figure 9 — OS/390 V2R9 Fixed Common Storage Overhead

 25

CPU Utilization (Seconds/Hour)

0.2 0

6.24 6.72

9.32 9.12

0

2

4

6

8

10

Global Local Member A Member B Member A Member B

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 10 — OS/390 V2R9 Fixed CPU Overhead

EXCP/Hour

360
0

4564 4860

324 0
0

1000

2000

3000

4000

5000

Global Local Member A Member B Member A Member B

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 11 — OS/390 V2R9 Fixed EXCP Overhead

Job Processing Comparison

The second experiment measured throughput and resource utilization
required for 100 trivial batch jobs submitted from a TSO/E session. The
jobs wrote ten thousand 132-byte records to sysout using IEBDG. (The
number of records written to spool was increased for this benchmark in
order to obtain measurable response times for JES3 on the faster
hardware). Both JESes had ten pre-started initiators and two converter
tasks (C/I DSPs for JES3) on each system.

When using WLM-managed initiators, we forced WLM to start exactly 20
initiators. This created a pool of initiators approximating the conditions of
the pre-started JES initiators.

The results are shown graphically in the following figures.

 26

CPU Utilization (Seconds)

15.32 15.59

20.32 21.40 20.77 21.50

0.00

5.00

10.00

15.00

20.00

25.00

JES Inits WLM Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

JES JESXCF Jobs Total

Figure 12 — OS/390 V2R9 CPU Utilization Running the Benchmark

EXCP

48637 49445 49652 48609 48025 47927

0

10000

20000

30000

40000

50000

JES Inits WLM Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

JES Jobs Total

Figure 13 — OS/390 V2R9 EXCP Totals Running the Benchmark

Average Batch Response Time (Seconds)

2.81 3.14

15.78

12.49

16.26
14.61

0

4

8

12

16

JES Inits WLM Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

 27

Figure 14 — OS/390 V2R9 Batch Response Times Running the Benchmark

Job Throughput Time (Whole Seconds)

70 70

89 92 91 92

0

20

40

60

80

100

JES Inits WLM Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 15 — OS/390 V2R9 Job Throughput Times Running the Benchmark

Performance Analysis

Fixed Overhead Analysis

When idling, JES2 consumes more of all of the resources we observed
(common storage, CPU and I/O). The CPU and I/O consumption is mainly
due to JES2’s requirement for timed checkpoint access.

OS/390 V2R7 JES3 did not consume any CPU or I/O resources during the
idle measurement. However, in OS/390 V2R9, the JES3 global processor
performed a small amount of timed processing. This is probably due to
the requirement for WLM sampling introduced with OS/390 V2R8 JES3.

Benchmark Analysis

In the first benchmark, total execute channel program (EXCP) operations
for JES3 were 21 to 22 percent higher than JES2 w/DASD checkpoint, yet
the work completed 33 percent faster using 10 to 23 percent fewer CPU
resources. Total EXCPs for JES3 were 32 percent higher than JES2 w/CF
checkpoint, yet the work completed 36 percent faster using 20 to 28
percent less CPU. Average batch response time under JES3 was 3.4
seconds, 92 to 93 percent faster than JES2.

In the second benchmark, total EXCPs for JES3 were almost identical to
JES2 w/DASD checkpoint (ranging from 2 percent lower to 1.7 percent
higher), and the work completed 21 to 24 percent faster using 23 to 28
percent fewer CPU resources. Total EXCPs for JES3 were 1.3 to 3 percent
higher than JES2 w/CF checkpoint, and the work completed 23 to 24

 28

percent faster using 25 to 29 percent less CPU. Average batch response
time under JES3 ranged from 2.8 seconds (JES initiators) to 3.1 seconds
(WLM initiators), 75 to 83 percent faster than JES2.

An analysis determined I/O contention was a primary contributor to the
slower batch response times under JES2. JES2’s spool access algorithm
is not cooperative like JES3’s and is highly susceptible to performance
degradation due to I/O contention. The effects of this shortcoming can be
seen clearly in our benchmark even though only 20 jobs were executing.

Though ESCON-attached via four paths and cached, the 9345 DASD
used in the first benchmark did not have fast write capability. Earlier
drafts of this document predicted that running the same tests on modern,
fast-write-capable hardware would reduce the impact of JES3’s superior
I/O management algorithm. Now that a second benchmark has been run
using the S/390 Internal Disk Subsystem (SSA, 40MB/second, full-duplex,
32MB fast write cache, two-level 64MB/128MB write-through cache), we
see this prediction was indeed accurate. On the new hardware, JES3’s
total job throughput time advantage was reduced from 32-36 percent in
the first benchmark to 21-24 percent in the second benchmark. Likewise,
the batch response time advantage was reduced from 92-93 percent in
the first benchmark to 75-83 percent in the second benchmark.

Adding additional spool volumes will reduce contention and allow more
jobs to be executed in a given amount of time. Both JESes should benefit
equally from the increased parallelism provided by additional spool
volumes.

Throughput Analysis

Our benchmarks measured several different JES performance
characteristics under controlled circumstances. Clearly, the most
interesting data to be obtained from these measurements are the internal
throughput rates. That is, the amount of work that can be “pumped”
through the system over a fixed time interval.

We took the throughput results from the most recent benchmark and
calculated the throughput rate in number of jobs per hour for each of the
six different configurations. These throughput rates are expressed in
relative terms (the highest rate being 1.000) in Figure 16.

 29

Relative Internal Throughput Rates

1.000 0.999

0.791 0.763 0.770 0.759

JES Inits WLM Inits JES Inits WLM Inits JES Inits WLM Inits

JES3 JES2 w /DASD Ckpt JES2 w /CF Ckpt

Figure 16 - OS/390 V2R9 Relative Internal Throughput Rates

There is no reason to assume that these JES performance differences
should be limited only to batch jobs that produce sysout. It seems
reasonable that the differences can, to some extent at least, be
extrapolated to any JES spool I/O-related activities, such as printing on
high-speed printers, interactively browsing spool-resident reports, or
processing spool data via external writers or other facilities. Empirically
measuring performance differences in these areas is left as an exercise
for the reader.

JES3 to JES2 Comparison of Software Licensing Costs

JES3 is an optional, priced feature of z/OS. This license charge is
approximately 4 percent of the z/OS base license charge. Multi-JESplex
installations typically pay an additional 2½ percent of the base charge to
license the optional SNA/NJE feature. For large installations, these
charges typically amount to less than ½ of 1 percent of total mainframe
software expenditures.

Most JES3 installations find JES3’s superior system management,
productivity, and performance characteristics more than justify the
difference in licensing costs. Unfortunately, direct cost savings due to
these factors are difficult to measure, and differ from one installation to
another depending on configuration, usage patterns, and charge-back
algorithms. For this reason, no attempt is made to quantify these “soft
dollar” savings in this document. Nevertheless, these factors should be
considered a major part of any JES3 strategy justification.

As JES2 installations become larger and more sophisticated, the lack of
JES3 functionality in their environments becomes more problematic. This
lack of function creates opportunities for some independent software
vendors to provide JES3 functions to JES2 environments. For example,

 30

JES2 installations wishing to extend their environments with pre-execution
device and data set allocation awareness often license a product from
MVS Solutions called ThruPut Manager. Licensing software products that
bring JES3-like functionality to JES2 environments quickly erases any
“hard dollar” differences between the JESes. In fact, nearly all of the
installations we surveyed found that after carefully analyzing all of the
costs involved, a JES2 strategy was actually more expensive than JES3.

The above-mentioned survey was performed in 1999. Once SDSF
standardized on MQSeries for its JESplex-wide functions, the costs
associated with a JES2 strategy increased substantially. At the same
time, z/OS V1R8 provides “NJE over TCP/IP” functionality to JES3 at no
extra cost, which reduces JES3 operating costs by eliminating the need
for the (fairly expensive) SNA/NJE feature.

Summary

JES3 continues to provide robust functionality, much of which remains
unavailable to the JES2 community.

JES3 provides end users with features that increase their productivity,
even in a single-system environment.

JES3 balances batch workloads better than JES2 and helps lower costs
associated with production job restarts.

JES3’s architecture supports more jobs, more output, and “super-large”
DASD devices that haven’t even been developed yet.

JES3 is more resource efficient than JES2 and runs batch jobs and other
spool I/O intensive activities faster.

JES3’s costs are going down even as JES2’s costs are increasing.

When considering only that JES3 is an optional, priced feature of z/OS, it
appears a JES3 strategy may cost more than JES2. However, when all
factors are considered, JES3 is often found to provide the better value.

	Introduction
	JES3 to JES2 Functional Comparison
	Overview
	JCL Processing
	Detecting JCL Errors
	When Job Submitted to Execute
	When Job Submitted for JCL Syntax Checking Only

	Offloading JCL Processing

	Device and Data Set Allocation
	Job Class Management
	System Log Management
	Initiator Management
	Workload Balancing
	Output Management
	Output Grouping
	Output Attribute Inheritance

	Dependent Job Control
	Deadline Scheduling
	Health and Performance Monitoring
	Systems Management
	Scope of View and Control
	Usability
	Product Extensions

	Spool Data Sets
	Partitioning
	Architecture
	Data Set Organization/Placement
	Addressing

	Job Queue Capacities and Limitations
	JESplex Member Names
	Network Job Entry
	Network Topology
	NJE Performance
	Store-And-Forward
	Commands from Remote NJE Nodes

	Shutdown
	Customization

	JES3 to JES2 Application Availability Comparison
	Planned Outage
	Unplanned Outage
	Detecting Errors in the Initialization Stream
	Production Job Failure Recovery/Restart

	JES3 to JES2 Performance Comparisons
	OS/390 V2R7 Performance Comparison
	Fixed Overhead Comparison
	Job Processing Comparison

	OS/390 V2R9 Performance Comparison
	Fixed Overhead Comparison
	Job Processing Comparison

	Performance Analysis
	Fixed Overhead Analysis
	Benchmark Analysis
	Throughput Analysis

	JES3 to JES2 Comparison of Software Licensing Costs
	Summary

