Using HLASM

Not Your Father's Assembler Language

Edward E. Jaffe
Phoenix Software International

WAVV Conference
Sunday, May 17, 2009
8 AM Legacy North 1

| have been a professional Assembler Language
programmer for over 26 years.

Along the way, | have made numerous adjustments to
my programming methods and style in an effort to
become more productive and write better programs.

No adjustment has resulted in a more profound and
positive impact than that of adopting a 100% structured
programming approach.

I’m honored for the opportunity to share with you.

Top-down development and design.
Program flow is always hierarchical.
Levels of abstraction become major routines or separate modules.
A module must return to its caller (which could be itself if recursive).

Major decision-making appears at as high a level as possible. The routine
at the top of the hierarchy is a synopsis of the entire program.

Programming in which few or no GOTOs are used because only
three basic programming structures — mathematically proven to

solve any logic problemlll — are used:
Sequence.
Choice.
Repetition.

[1] Corrado Bohm and Guiseppe Jacopini, “Flow Diagrams, Turing Machines and Languages with
Only Two Formation Rules", Communications of the ACM, No. 5, May 1966, pp. 366-371.

« Object orientation and organization.
Objects.
Encapsulation.
Inheritance.
Classes, Methods, etc.

The Beginning of an Evolution

Prof. Dr. Edsger W. Dijkstra, Communications of the ACM, Vol.
11, No. 3, March 1968, pp. 147-148.

‘For a number of years | have been familiar with the
observation that the quality of programmers is a decreasing
function of the density of go to statements in the programs
they produce. More recently | discovered why the use of the
go to statement has such disastrous effects, and | became
convinced that the go to statement should be abolished
from all "higher level" programming languages ...’

The average number of lines of code between two GOTOs.

Studies show that when sufficiently powerful programming structures
are available, GOTOs are not used.

A 2004 comparisonl!! of Fortran programs written in the 1970s to
today’s C, Ada, and PL8!2 code revealed GOTO densities that differ
by several orders of magnitude.

My research into large assembler language programs showed just
under 8 lines per GOTO (branch) not counting subroutine call/return.

Fortran C Ada PL8 HLASM
Files without GOTO none 81.5% 99.4% 98.5% none
Lines/GOTO About 10 [3] 386 13614 1310 <8

[11'W. Gellerich, T. Hendel, R. Land, H. Lehmann, M. Mueller, P. H. Oden, H. Penner, "The GNU 64-bit
PL8 compiler: Toward an open standard environment for firmware development”, IBM Journal of
Research & Development, 48, No. 3/4, May/July 2004, pp. 3-4.

[2] PL8 is the language in which much IBM System z firmware is written.

[31 8% - 13% of all Fortran statements are GOTOs.

Relating GOTO Use to Software Quality

W. Gellerich and E. Plodereder, "The Evolution of GOTO Usage
and Its Effects on Software Quality," Informatik '99, K.
Beiersdorfer, G. Engels, and W. Schéafer, Eds., Springer-Verlag,
Berlin, 1999

From Abstract: This paper presents the results of a study in which we analyzed
the frequency and typical applications of GOTO in over 400 MB of C and Ada
source code. The frequency analysis showed a large difference in GOTO
density. The usage analysis demonstrated that the availability of sufficiently
powerful control structures significantly reduces the frequency of GOTO.
Relating these results to error rates reported for large software projects indicates
that programs written in languages with lower GOTO density are more
reliable.

Translation: GOTO statements, when used, remain as harmful
today as they were when Dijkstra first warned about them in 1968!

Most programming languages used today either discourage or
completely disallow the use of GOTO statements.

Those more recently invented are more likely to prohibit its use

altogether:
Fortran (1957) GOTO is required
Basic (1960) GOTO is required
C (1973) GOTO is rarely or never used
Rexx (1981) GOTO is rarely or never used (not documented)
Ada (1983) GOTO is rarely or never used
C++ (1985) GOTO is rarely or never used
Perl (1987) GOTO is rarely or never used
Visual Basic (1991) GOTO is rarely or never used
Python (1991) has no GOTO statement
Ruby (1993) has no GOTO statement
Java (1994) has no GOTO statement

Hierarchical Program Flow — Building Blocks

/

A

/]

AN

AL

\

Any block in this diagram may be a
single statement, construct, subroutine,
or an entire subprogram or module.

Three articles and a good text book on the subject:

Niklaus Wirth, “On the Composition of Well-Structured Programs”, ACM
Computing Surveys (CSUR), Vol. 6, No. 4, December 1974, pp. 247-259.

Donald E. Knuth, “Structured Programming with go to Statements”, ACM
Computing Surveys (CSUR), Vol. 6, No. 4, December 1974, pp. 261-301.

Brian W. Kernighan, P. J. Plauger, "Programming Style: Examples and
Counterexamples"”, ACM Computing Surveys (CSUR), Vol. 6, No. 4,
December 1974, pp. 303-319.

C.E. Hughes, C.P. Pfleeger, and L.L. Rose, “Advanced Programming
Techniques. A Second Course in Programming in FORTRAN", New York,
John Wiley and Sons, 1978, ISBN:0-471-02611-5

The idea is to use GOTO only as a means of implementing
control structures. This is necessary In older languages that do
not natively implement the control structures.

This kind of “structured” programming depends on extra-
disciplined programmers making efforts above and beyond the
norm.

Without enforcement from the compiler, the structure of such
programs is easily corrupted. Corruption can occur inadvertently
by a programmer who doesn’t fully understand the original intent
or deliberately by a hurried “quick” fix.

Human nature being what it is, the path of (apparent) least
resistance is almost always taken.

Thus, superimposed, artificial structure using GOTOs tends to
deteriorate over time — a type of increasing entropy — as the
program reverts back to its “native,” unstructured state.

Structured programs always contain hierarchical call/return
paths. Such a design is best implemented with a low-overhead
stacking mechanism for saving/restoring register contents.

No such mechanism has been provided to assembler language
programmers. Even the most simple save area stacking
remains a “roll your own” proposition. The hardware linkage
stack, introduced with ESA/370, provides only modest relief.

Without save area stacking, assembler language programs
often have a flat, rather than hierarchical, organization.

This creates much temptation for convoluted logic and/or
branches from the middle of one “routine” into another.

Nesting. The Most Important Element of
Overall Program Structure

Nest!

Subroutines should not be created just to avoid code duplication. They
should be the norm.

Subroutines bring order and organization.

Nest!
Implement a low-overhead stacking mechanism.

Nest!

All routines should kept to a manageable size — no more than a couple/few
of “pages” of code if possible.

Don’t overdo it!
Like everything else in life, there are trade-offs.
Gratuitous nesting can affect performance.

Choose subroutine boundaries wisely, especially in performance sensitive
code.

Well-written, Yet “Flat” Program
Organization

Taskl DC OH * Perform Accounting
: Account DC OH
* Find the Entry L
Find DC OH L
L ... LHI ...
_ L ce . Accountl DC 0H
Findl DC OH CLI ...
LTR o JE SetMsgl
JNZ Find2 L .«
¢’//’/’— LHI ... A
J SetMsg2 ST
Find2 DC 0OH T™ ...
C ... Jz Account2
JE Process L “ ..
L A ..
J Findl ST 506
Account2 DC OH
* Process the Entry LTR ...
Process DC OH JH SetMsgl
MVC “ .. LA “ ..
L ... JCT xx,Accountl
ST .. J Task2
™ “ e
JZ Processl * Set Messages
MVI ... SetMsgl DC OH
J Account .
Processl DC OH .
MvC ... SetMsg2 DC OH
MVC
CLC e
JE Account

ST . Task2 DC OH

Hierarchical Program Organization

(mainline)
JAS R14,Taskl
JAS R14,Task2

éTKSAVE POP

BR

R14

khkkkkkkkkkhkkkhkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkxk

*

Perform Task 1

*

hkhkkkhkkkkkhkkkkkhkkkkkhkkkkkhkkhkkkkhkkhkkkkhkkkkkk

Taskl DC

OH

STKSAVE PUSH

JAS
LTR
JNZ
JAS
LTR
JNZ
JAS
J
TasklMsg DC

TasklRet DC

R14,TasklFind
R15,R15
TasklMsg
R14,TasklProc
R15,R15
Task1lMsg
R14,TasklAcct
TasklRet

OH

OH

STKSAVE POP

BR

R14

TasklFind DC OH
STKSAVE PUSH

STKSAVE POP,
RETREGS= (R15)
BR R14

TasklProc DC OH
STKSAVE PUSH

STKSAVE POP,
RETREGS= (R15)
BR R14

TasklAcct DC OH
STKSAVE PUSH

STKSAVE POP
BR R14

hkhkkkhkkkkkhkkkkkhkkkkkhkkkkkhkkhkkkkhkkhkkkkkkkkkxk

£ Perform Task 2 <5
khkkkhkkkkkhkkkkkhkkkkkhkkkkkhkkhkkkkhkkhkkkkkkkkkxk
Task2 DC OH

STKSAVE PUSH

éTKSAVE POP
BR R14

Leverage powerful HLASM capabilities.

HLASM macro support is extremely powerful. Most HLLs — even those that claim to
support so-called “macros” — have no equivalent.

Enforce program structure.

Eliminate GOTO statements from program source.
Eliminate extraneous labels.

Eliminate out-of-line logic paths.

Enhance source code readability.

Provide uniformity and standardization — building blocks.

Provide many HLL benefits without HLL overhead.

SPMs define the building blocks used to author the program.

They provide enforcement necessary to prevent corruption of
program structure.

No manually-created, artificial “structure” is imposed on the
program source. The program is coded naturally.

Requires no more programmer cooperation than do HLLs that
support GOTO but discourage its use (e.g., Perl or C).

SPMs Eliminate GOTO Statements from
Program Source

As predicted by the studies, SPM use reduces the
need/desire to code GOTO (BC and BRC instructions).

Conditional branching is performed in accordance with the
universally-understood rules of the construct. Control always
returns back to the original path. Branching between
constructs is prohibited.

SPMs “hide” the branches that form the constructs.

O—1_1—O C}’<>

Labels (other than those used for subroutines, labeled USINGs,
etc.) represent unstructured exposures. The more labels that
exist, the higher the probability that one or more of them will be
used as the target of a branch.

Label management (naming/renaming) is “busy work” and a
constant source of programming errors.

Code fragments copied from one part of a program to another
require label “fix up”. Mistakes here can produce loops or
worse. BTDTGTTS!

SPMs “hide” the labels that form the constructs.

SPMs Eliminate Out-of-line Logic Paths

Out of line logic paths make programs harder to follow.
Every branch is an opportunity to create out-of-line logic.

Structured programs avoid this pitfall.

LA R1,Table LA R1l,Table

LHT RO, TableCount LHT RO, TableCount
LOOPTOP DC OH LOOPTOP DC OH

CLI 0 (R1) ,value2 CLI 0 (R1l) ,valuel

JE LABELA JNE LABELA

CLI 0(R1l) ,value3 .

JE LABELB . (code for valuel)

CLI 0(R1l) ,valuel .

JNE ITERATE J ITERATE

. LABELA DC OH

. (code for valuel) CLI 0 (R1l) ,value2

c JNE LABELB
ITERATE DC OH 5

LA R1l,TableEntLn(,R1) . (code for value2)

JCT RO, LOOPTOP .

J LABELX J ITERATE
LABELA DC OH LABELB DC OH

. CLI 0 (R1l) ,value3

. (code for value2) JNE ITERATE

J ITERATE . (code for value3)
LABELB DC OH o

. ITERATE DC OH

. (code for value3) LA Rl ,TableEntLn (,R1)

. JCT RO, LOOPTOP

J ITERATE LABELX DC OH
LABELX DC 0OH

SPMs facilitate code indentation — arguably the single most
powerful heuristic ever devised for illustrating conditional
program flow within source code.

Source code editors on both mainframe and PC are designed to
work with indented code such as that typically found in PL/I, C,
Pascal, Ada, Visual Basic, REXX, Perl, Ruby, Java, etc.

Most decent mainframe editor features include:
Line commands for shifting columns (to change indentation level).
Ability to exclude entire blocks of code from view.

Some editors (e.g. ISPF) even provide line-oriented editing
commands whose behaviors are sensitive to the indentation
level of the code.

SPMs reduce the number of different kinds of constructs used to
write the program. They form the building blocks from which the
program logic is constructed.

No “custom” programming constructs are possible.

Every programmer that reads or modifies the program
understands a priori the flow of each construct without tedious
Inspection of the logic.

Good programmers visualize their programs before they write
them. Good programmers that use SPMs will visualize
structured programs before they write them.

Programmers learn to solve problems with the tools they are
given. Programmers will actually think differently!

Which is More Readable/Maintainable?

Try to make an unbiased assessment of the potential for
coding mistakes and what'’s required to add new cases.

LABELA

LABELB

LABELC

LABELX

CLI 0(R1l) ,valuel
JNE LABELA

: (code for valuel)

J LABELX

DC 0OH

CLI 0 (R1l) ,value2
JNE LABELB

: (code for value2)
j LABELX

DC OH

CLI O0(R1l) ,value3
JNE LABELC

: (code for value3)

J LABELX
DC OH

: (handle all other cases)

DC 0H

SELECT CLI,O(R1l),EQ
WHEN valuel

: (code for valuel)
WHﬁN value2

: (code for wvalue2)
WHEN value3

: (code for value3l)
OTHRWISE |,

: (handle all other cases)

ENDSEL ,

« Single instruction — sequence.
* DO - logic boundary, choice and repetition.

* Programming structures implementing
additional “look and feel” to choice and
repetition.

» Subroutine.
« Control section.

» Module.

i. RO ,RecCount Get record count
AHI RO,1 Add 1
ST RO ,RecCount Update record count

Define logic start/end boundaries.
Imparts order and organization.

Perform logic tests and controlled branching.

By far the most useful structure of all.
A large, complex program could be written using no other structures!

>>—DO ><
|—LABE:L=I abel _|
>>—DOEXIT—condi ti on(s) ><
Lpo=dol abel —
>>——ASMLEAVE ><
Ldol abel —
>>—ITERATE ><

Ldol abel —

>>—ENDDO ><

This routine updates a record count field when a record exists.

The ProcessDetall routine is invoked only for records that are
not headers or trailers.

DO , Do for record
ICM R3,B'1111"' ,RecPtr Get record address
DOEXIT Z Exit if no record
L RO ,RecCount Get record count
AHI RO,1 Add 1
ST RO, RecCount Update record count

DOEXIT CLI,RecType,EQ,RecHdr Exit if header

DOEXIT CLI,RecType,EQ,RecTrl Exit if trailer

JAS R14 ,ProcessDetail Process detail record
ENDDO , EndDo for record

Logic is exactly analogous to what would be traditionally coded.
There is no additional overhead whatsoever.

Below is an example of a mainline that calls many subroutines.

| encapsulate almost every major piece of logic in a simple DO.

DO LABEL=MainLine Do mainline
JAS R14,FindIt Locate the instance
DOEXIT LTR,R15,R15,NZ Exit if error
JAS R14 ,Modify Modify the instance
DOEXIT LTR,R15,R15,NZ Exit if error
JAS R14,AcctUpdt Update accounting info
DOEXIT LTR,R15,R15,NZ Exit if error
JAS R14 ,Unlock Unlock the data base
DOEXIT LTR,R15,R15,NZ Exit if error
JAS R14 ,Report Generate report data

DOEXIT LTR,R15,R15,NZ Exit if error
(Insert additional calls here)

ENDDO , MainLine EndDo mainline

Again, exactly analogous to traditional code. But, without the
ever-present temptation to branch outside the structure.

Building Blocks — Simple DO Looping

This simple DO drives a loop to repetitively process “entries”.

ITERATE is used to perform the looping.

60 Do for all entries

JAS R14 ,GetEntry Get the next entry
DOEXIT LTR,R15,R15,NZ Exit if no more entries
JAS R14,ProcessEntry Process the entry
ITERATE |, Process next entry

ENDDO , EndDo for all entries

Building Blocks — Nested Simple DO

Implement more complex choice logic.

DO LABEL=SetVarsMsg Do for msg processing
DO , Do for msg include tests
DOEXIT CLI,CurMsgType,LE,C' ' Include if no msg yet formatted

DOEXIT TM,MsgFlgs,Error,O Include if an error message
(other include tests)
ASMLEAVE SetVarsMsg Bypass message formatting
ENDDO , EndDo for msg include tests

(format the message to be displayed)

ENDDO , SetVarsMsg EndDo for msg processing

Building Blocks — More DO Keywords

Additional DO keywords provide more looping choices.
BCT/JCT, BXH/JXH, BXLE/JXLE loops are supported.

DO INF

DO UNTIL or FROM, TO, B

DO WHILE

Y

Logic

Logic

Logic

1 18

False

4'll."]’rue

True

<‘III'h%Be

Test conditions sequentially.

When condition is true, perform appropriate logic and then exit

the structure.

NEXTWHEN statement may be used within WHEN clause to continue
testing remaining conditions rather than exiting the structure.

Optional “otherwise” clause.

>>—SELECT ><
|—condi tion-prefi x—
>>—WHEN val ue ><
|:condi ti on(s)—J
>>—NEXTWHEN ><
>>—OTHRWISE ><
>>—ENDSEL ><

This code fragment takes various actions based on the contents
of reqgister 1 (the so-called “start” value).

In case you're wondering about the ASMLEAVE, this real-world
SELECT was nested inside a simple DO (of course)!

SELECT , Select Start value
WHEN CHI,R1,EQ,O When Start=FIRST
MVC EMRPARMS ,=F'1" Force to top of data
WHEN CL,R1,EQ,=X'7FFFFFFF' When Start=LAST (explicit)
MVC EMRPARMS ,=X'7FFFFFFF' Set both values to LAST
MVC EMRPARMS+4 ,=X'7FFFFFFF' (same)
ASMLEAVE , Exit the structure
WHEN CHI,R1l,EQ,-1 When Start=Current
MVC EMRPARMS , CBLKATNM Set to absolute number at top
WHEN CHI,R1l,EQ,-2 When Start=Time/Date (unsupported)
MVC EMRPARMS ,=F'1' Force to top of data
WHEN CHI,R1,LT,O0 When Start=Label
MVC EMRPARMS, 0 (R1) Set value at label
OTHRWISE |, Otherwise Start=ordinary numeric
AL R1,CBLKBNDL Make relative to low boundary
AHT R1,-1 (same)
ST R1 , EMRPARMS (same)

ENDSEL |, EndSel Start wvalue

An implementation of the familiar “branch table” — used to

associate program logic with uniformly-distributed numeric
values.

Handles values >0 and some power of 2.

|——POWER=0
>>—CASENTRY B ><
POWER=power —
<— |
>>—CASE—Val ue ><

>>—ENDCASE

This code fragment invokes a different routine depending on the
value of the “service call code” loaded into R14.

CASENTRY R14 Cases for service call
CASE 1 EAPDCallGetInput
JAS R14 ,APIS GetInput Get caller input
STM RO,R1,TSAREGO00 Pass back length & ptr
CASE 2 EAPDCallSetMsg
JAS R14 ,APIS SetMsg Set messages
CASE 3 - EAPDCallSetScrn
JAS R14 ,APIS SetScrn Set screen data
CASE 4 - EAPDCallSetFunc
JAS R14 ,APIS SetFunc Set function data
CASE 5 - EAPDCallSetPos
JAS R14 ,APIS SetPos Set position data
CASE 6 - EAPDCallTermNtfy
JAS R14,APIS TermNtfy Notify API of termination

ENDCASE |, EndCases for service call

Implementation of familiar IF/THEN/ELSE choice structure.
ELSE and ELSEIF are optional.
ELSEIF may be used to create a structure similar to SELECT.

Numerous logical connectors available for compound tests.

>>—IF——condition(s) ><
I—THEN—I
>>—ELSEIF—condition (s) [] ><
THEN
>>—ELSE ><

X

>>—ENDIF

This code fragment obtains the “job” name in a z/OS
environment from pointers in an ASCB control block.

L R14,PSAAQOLD Load ASCB address
USING ASCB,R14 *** Synchronize ASCB
LT R15,ASCBJBNI Load address of job name
IF Nz If job name available
MVC ESMFJOBN, 0 (R15) Set job name
ELSE , Else
LT R15,ASCBJBNS Load address of task name
IF NZ If task name available
MVC ESMFJOBN, 0 (R15) Set as job name
ELSE , Else
MVC ESMFJOBN,=C' *UNKNOWN' Set name to ‘*UNKNOWN’
ENDIF , EndIf
ENDIF , EndIf job name available

DROP R14 *** Drop ASCB

Subroutines bring order and organization.

Logic boundaries are created.

Source code indentation starts over.

A “legitimate” use for a label.

R14 is normally used to hold the return address.

Generally, a return code (if any) is passed back in R15. There
may also be pointers, counts, tokens, etc. passed back in R1
and RO.

Very local subroutines often use and/or pass back additional
registers.

0106001
0106002
0106003
010004
0106005
010006
8106007
10008
0106009
0106010
106011
10012
210013
B10014
010015
010016
010017
010018
010019
010020
010021
010022
010023
010024
010025
010026
10027

A E R K K K KRR R KRR KK EEEEERE R E R KKK

* Invoke IRXEXCOM to Update Wariables *
3K 3K 3K 3K 3K 2K 2K K OB K KB K K8 3 K B K B K 8 3 3K 28 2K 28 K 28 0 KK K K K K K K K K 3K 3K 2K 3K 3K K 0K K KK K K K K

REXX_SetWarsEXCOM DC OH

CL
ENHR

EJESSREY TYPE=STKPUSH,

HYCIN
LA
ST
LA
ST
ST
MYC2
01

L

LE

L

LA

L
BASR
LH
XC

EJESSRY TYPE=STKPOP

ER
DROP

R4 ,Dws_Varfrea
R14

Update requested 7
Return if not

Save the registers

- Regs to save/restore

REGS=({R14:R1)

Dws WorkD1,=C "'MOCKEXREI ' '+7 Set IRXEXCOHM char wvalue
E@,Dws_WorkD1
E@,Dws_HacWk+00

Set parameter H1
{same)
Ro,=F 0" Set parameters H2 & H3
RO ,Dws_Maclk+04 {same)
RO ,Dws_HMaclWk+08 {same)
Dws_MacWk+12 ,Dws_VYarArea Set parameter H4
Dws MacWk+12,X'80" Indicate end of list
E1% ,Dws EnvBlock Get EnvBlock address
RO ,.E15 Pass EnvBlock ptr in RO
R15,ENVBLOCK_IRXEXTE-ENVEBLOCK(,R15) Get IRXEXTE address
Rl .,Dws Haclk Point to parm list
R15,IRKEXCOM-IRXEXTE(,R15) Get IRXEXCOHM address
Rl14,R1% Invoke IRXEXKCOM serwvice
R4 RS ,Dws VarfArea Get variable area ptr/length
Dws VarPtr ,Dws VarPtr Zero last wvariable pointer
Restore the registers
REeturn
*¥Kk% Drop Var_

R14
R¢

Combining SPM Condition Tests With
Instructions That Set the CC

L R14 ,GENASCB Load ASCB address
USING ASCB,R14 *** Synchronize ASCB
IF LT,R15,ASCBJBNI,6 NZ If job name available
MVC ESMFJOBN, 0 (R15) Set job name
ELSE , Else
IF LT,R15,ASCBJBNS,6NZ If task name available
MVC ESMFJOBN, 0 (R15) Set as job name
ELSE , Else
MVC ESMFJOBN,=C' *UNKNOWN' Set name to ‘*UNKNOWN’
ENDIF , EndIf
ENDIF , EndIf job name available

DROP R14 *** Drop ASCB

IF $NSXENCL,0,0,NZ
JAS R14,BadEnclaveSet
ELSE ,

(process logic in enclave)

ENDIF ,

*Thanks to Tom Harper for pointing this out!

Update SYSLIB concatenation:
HLA.SASMMAC?2 for z/OS
PRD2.PROD for z/VSE

Add the following to the top of your program:

COPY ASMMSP Structured Assembler Support

Add the following if your program uses relative branch
Instructions:

ASMMREL ON Enable relative branch for SPMs

z/OS users should add one of the following as well:

SYSSTATE ARCHLVL=1 Program supports immediate/relative
OR
SYSSTATE ARCHLVL=2 Program supports z/Architecture

Make Modifications to IBM macro ASMMNAME

&ASMA NAMES CASE SETC
&ASMA NAMES CASENTRY SETC
&ASMA NAMES DO SETC
&ASMA NAMES DOEXIT SETC
&ASMA NAMES ELSE SETC
&ASMA NAMES ENDCASE SETC
SASMA NAMES_ENDDO SETC

SASMA NAMES ENDIF SETC
S§ASMA NAMES ENDLOOP SETC
SASMA NAMES ENDSEL SETC
SASMA NAMES ENDSRCH SETC
S§ASMA NAMES EXITIF SETC
S§ASMA NAMES IF SETC
SASMA NAMES ORELSE SETC
SASMA NAMES OTHRWISE SETC
SASMA NAMES SELECT SETC
SASMA NAMES STRTSRCH SETC

&ASMA NAMES WHEN SETC
&ASMA NAMES ELSEIF SETC
&ASMA NAMES LEAVE SETC

&ASMA NAMES ITERATE SETC
&ASMA NAMES NEXTWHEN SETC

'CASE'
'CASENTRY'
|Do|
'DOEXIT'
'ELSE'
'ENDCASE'
'ENDDO''
'ENDIF'
'ENDLOOP'
'ENDSEL'
'ENDSRCH'
'EXITIF'
TR’
'ORELSE''
'OTHRWISE'
' SELECT'
'STRTSRCH'
'WHEN'
'ELSEIF'
'LEAVE'
'ITERATE'
'NEXTWHEN'

EEJ

00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000

Getting SPMs Inside Macros to Print

The SPMs explicitly disable printing of their own inner macro
calls using PRINT NOMCALL.

Enable printing of inner macro calls using PRINT MCALL to
ensure SPM invocations appear on the assembler listing.

MACRO |,
TESTMAC |,
PUSH PRINT, NOPRINT <Save PRINT status>
PRINT MCALL, NOPRINT <Print macro calls>
XR R15,R15 Set return code = 0
IF CLI,O(R1l) ,EQ,C'X' If Rl points to 'X'
LHI R15,4 Set return code = 4
ENDIF , EndIf
POP PRINT, NOPRINT <Restore PRINT status>
MEXIT |,
MEND
TESTMAC |,
+ XR R15,R15 Set return code = 0
+ IF CLI,O0(R1l) ,EQ,C'X' If Rl points to 'X'
+ CLI 0(R1l),C'X"'
+ BRC 15-8, #QLB1
+ LHI R15,4 Set return code = 4
+ ENDIF , EndIf
+#QLB1 DC OH

Long (but reasonable) labels used for major routines.
Short labels (4 chars or less) for labeled USINGs.
“Zero-indent” operation code begins in column 6.
“Zero-indent” operand begins in column 12.
“Zero-indent” commentary begins in column 36.
Indentation delta is always 2 bytes.

Comment blocks for subroutines start in column 1.

Small comment blocks for code fragments follow indentation.

The Source Record Layout | Use

1 2 3 4 5 6 7

123456789012345678901234567890123456789012345678901234567890123456789012
Kkkkkkkkkk kA ARk Ak kkkkkkkkkkkkkkkkkkkkkkkkk kA kkkkkkkkkkkkkkkkk

* *
* Perform UNIT Modifications *
* *

kkhkkkhkkkkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkhkkkhkhkhkkkkkkkx

ModifyUnit DC OH
STKSAVE PUSH Save the registers

BASR R12,0 Point to constants
AHI R12,ModifyUnitConst-* (same)
USING ModifyUnitConst,R12 *** Synchronize base register

kkhkkkhkkkkhkhkkkkkhkkkkkhkkkkkhkkkkkhkkkkkkk

* Get Specified Value S
hkhkhkhkhkhkkkkkkkkkhkhkhkhkhkhkhkkkkkkkkhkkhkkhkhkhkhkkkkxx
MVI LIFLDTID,EFLTLIUN Set field text unit ID
EJESSRV TYPE=GETBOVR, Get batch overtype wvalue
PARM=EFLTLIUN (same)
XR R15,R15 Zero out message number
IF CLI,LIUNIT,GT,C' ' If value supplied
hkhkhkhkkkkkkkkhkkhkhkhkhkhkhkkkkkkkkkhkkhkhkhkhkhkhkkkkkx*kx
* Validate the Value o3
khkhkkkkkkkkkhkkhkhkhkhkhkhkhkkkkkkkkhkkhkhkhkhkhkhkkkkkx*kx
DO , Do for wvalidation
IF CLI,LIUNIT,EQ,C'S' If SNA requested
MVC2 LIUNIT,=CL4'SNA' Set to SNA
ASMLEAVE , Done with validation

ENDIF , EndIf SNA requested

(more code follows ..)

Avoid the use of vectored returns.

Vectored returns imply a branch table follows the subroutine linkage.
Branch tables imply GOTOs (branches) and labels.

Try to make USING/DROP and PUSH/POP happen at the
same indentation level.

Use VECTOR=B for CASE macro set when using based
branches. (Or just always use relative branches.)

Choose constructs that require minimal changes to add new
cases in the future.
Think about the next programmer — even if it’s you!

Avoid excessive indentation.

Don’t be afraid to insert “white space” between statements.

Use large screens when editing (I now use 90x80).
The larger the screen, the more logic you can see at once.
The more code you can see, the better you understand the “flow”.

A “page” of code is whatever size you decide it should be. Not just what fits
on a sheet of paper. (Does anyone print listings anymore?)

Keep the size of constructs “reasonable”.

Ideally, a construct will fit on one “page” so you can see the boundaries. A
couple/few “pages” is not unreasonable.

Very large CASE or SELECT structures should have a comment block
precede each CASE/WHEN clause. That clause can be about the size of
any other “normal” routine.

Create subroutines when things start to get unwieldy.

Rather than nesting many, many IF/THEN constructs

(essentially ANDing the outcome of multiple tests):
Use simple DO with DOEXIT/ASMLEAVE.

Rather than nesting many, many IF/ELSE constructs:
Use ELSEIF.
Use SELECT.
Use simple DO with DOEXIT/ASMLEAVE.

Use subroutines even for code used only once:
All subroutines begin at “zero” indentation level.
Calling routines become smaller; more readable and maintainable.

But don’t overdo it! Save/restore overhead should be minimal compared to
the work you are doing in the subroutine.

Challenges Caused by Assembler
Language Syntax Restrictions

Existing assembler language syntax rules are not conducive to

free-form indentation.
Continuation characters must appear in column 72.
Continued statements must begin in column 16.
Comment statements must have an asterisk (*) in column 1.

Shifting a block of code left or right to change the indentation
level often creates syntax errors.

My FLOWASM HLASM exit helps address these issues.

Assembler Language Programming
Resources I've Made Public

Modifications to the SPMs:
NEXTWHEN macro (not needed for HLASM 1.6).
Carry and borrow condition checking.

STKSAVE Macro.

A macro for managing a save area stack.
Based on — but not actually the same as — a macro we use internally.

FLOWASM HLASM Exit.

Allows assembler language programs to be coded naturally with a more
free-form syntax.

Prints “flow bars” to match up SPMs on the listing.
This is exactly the same exit we, and some other ISVs, use internally.

Available from:
ftp://ftp.phoenixsoftware.com/pub/demo/flowasm.xmi
ftp://ftp.phoenixsoftware.com/pub/demo/flowasm.zip

Low-overhead local save area stack services.
Can optionally save/restore access registers.
Can save/restore any subset of registers.

Requires 32-byte stack control area.
Initialized by INIT call at program startup.

Currently for 24/31-bit mode only.

Works on z/OS, z/VM and z/VSE.

Relaxes cumbersome syntax rules:

Comment blocks may start in any column. They may begin with either an
asterisk (*) or a slash and asterisk (/*).

No explicit continuation needed when macro operand ends with trailing
comma.

Continued macro operands may start in any column.

For z/OS, supports both fixed and variable length source input:
Variable length input may be numbered or unnumbered.
Variable length explicit continuation is trailing ‘+’ character.
Library (SYSLIB) input still restricted to LRECL=80.
We use only RECFM=FB LRECL=80 source libraries.

Prints “flow” bars to match up SPMs on the listing.

Reformatting too-long lines:
Remove superfluous blanks between op-code and operand.

If still too long, remove superfluous blanks between operand and
commentary.

If still too long, remove superfluous blanks before op-code.

If still too long:
If operand fits on the line, commentary is truncated.

If operand is too long, it is wrapped and continued in column 16 of the next line along with the
commentary.

Automatic continuation:

Detects trailing comma on macro operand and supplies ‘-’ continuation
character.

Continued operand shifted into column 16.
If commentary must be moved, it is moved immediately after operand.
If line too long, reformat as described above.

.0000325C

.00003260
.00003264
.0000326A
.00003272
.00003278
.0000327C
.00003280
.00003284
.0000328C
.0000328E
.00003292
.00003296
.0000329A
.000032A2
.000032A6
.000032AA

.000032AE
.000032B2
.000032B4
.000032B8

.000032BA
.000032C4
.000032C8
.000032CC
.000032D2

9200

48E0
12EE
ATEE
D207
ATEA
44E0
43E0
ATEE
06EO
5810
A7TF4
ATEA
95F2
5810
ATF4
5810

89E0
1EE1l
98EF
1EE1l

D507
ATEA
ATF6
12FF
D200

83FC
83F8

0008
81C8
FFFF
C4DA
6000
00CoO

C4FO0
000E
FF40
A0OB
C4F4
0004
C4F8

0003
E000
81cC8

0009
FFF9

000003FC

C4E8 000001cC8

0000000B

E000 000001cCS8

000003F8

00000008
00003530
FFFFFFFF
00003522
00000000
000000CO

00003538
000032AE
FFFFFF40

0000353C
000032AE
00003540
00000003
00000000
00000000

00000009
000032BA

83FC E008 000003FC 00000008

58489 *kkkkkkkhkkkhkkhkkhkkhhkhhkhhhkhkhhkhhhkhkhhkhkhhkhhhkhkhhkhkhhkkhhkkhhkkhhkkhkkkhk

58490 * Search for Matching Column Name
58401 *kkkkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkkkhkkkhkkkhkkkhkkkkkx

58492
58493
58503
58504
58517
58530
58531
58532
58533
58534
58548
58549
58550
58558
58559
58573
58574
58582
58583
58590
58597
58598
58599
58600
58601
58614
58627
58628
58638
58651
58652

MVI

SUBSWKH3,X'00'

DO ,

}
]
|
]
|
]
|
]
|
]
1
]
I
]
I
]
1
]
|
]
|
]
|
]
|
]
}
]
|
]
1
]
I
]
I
]
I
]
I
]
|
]
|
]
}
]
|
]
I
]
|
]
I
]
1
E

LH R14,SUBSWKH1
DOEXIT LTR,R14,R14,NP
DOEXIT CHI,R14,GT,L'SUBSWKD1

MVC SUBSWKD1,=CL8' '
AHI R14,-1

EX R14,MCLCOMV2

ic R14 ,EFLLSTID

IF CHI,R14,LT,EFLLSTIB
BCTR R14,0

. L R1,=A (JJTUFLDIDX)
ELSE ,
: AHI R14,-EFLLSTIB
IF CLI,EMRJES,EQ,EMRJES2
L R1,=A (J2TDFLDIDX)
ELSE ,
L R1,=A (J3TDFLDIDX)
: ENDIF ,
ENDIF ,
SLL R14,3
ALR R14,R1
LM R14,R15,0 (R14)
ALR R14,R1

DO FROM=(R15)

*

Zero field TID value
Do for column name search
Get normalized length
Exit if invalid length
Exit if too long
Blank out work field
Make relative to zero
Copy to SUBSWKD1
Get list identifier
If tabular utility
Make relative to zero
Point to index table
Else
Make relative to base
If running JES2
Point to index table
Else running JES3
Point to index table
EndIf
EndIf tabular utility
Point to proper entry
(same)
Get offset & entry count
Change offset into pointer
Do for all entries

DOEXIT CLC,SUBSWKD1l,EQ,0(R14) Exit if matching entry

: AHI
ENDDO ,
DOEXIT LTR,R15,R15,Z
MVC SUBSWKH3 (1) ,8 (R14)

R14,FLD TblLen

NDDO ,

Advance pointer
EndDo for all entries
Exit if column not found
Copy field TID value
EndDo for column name search

Everything beyond this point Is
for reference only. It Is not part
of the material to be presented.

Structured Programming Macro Sets

IF

DO
CASE
SELECT
SEARCH

Disclaimer:

There are some coding fragments
shown in this presentation. Rather than
searching for real-world examples, |
made many of them up “on the fly” to
illustrate the usage of a particular
construct. Consequently, some of the
fragments do not make sense. Sorry.

» Logic

False

Predicate Values Connectors
Numeric value (1-14) AND
Condition mnemonic OR
Instruction,pl,p2,condition ANDIF
Compare-instruction,pl1,condition,p2 ORIF

ELSEIF

IF — Mnemonics and Complements

Case Condition Meaning Complement

Mnemonics
After compare H, GT High, Greater than NH, LE
instructions L, LT Low, Less than NL, GE

E, EQ Equal NE
After arithmetic P Plus NP
instructions M Minus NM

Z Zero NZ

@) Overflow NO
After test under mask @) Ones NO
instructions M Mixed NM

Z Zeros NZ

IF CLI,O0(Rl),GT,C'

ST
ENDIF

IF CLI,O0(R2),GT,C'

ST
ELSE

ST
ENDIF

’

14

14

R1,NBPtr

R2 ,NBPtr

R2,BPtr

1

1

+ +

+#QLB1

+
+

+
+#QLB3

+#@LB5

CLI
BRC
ST
DC

CLI
BRC
ST
BRC
DC
ST
DC

0 (R1),C'
15-2, #QLB1
R1,NBPtr
OH

0(R2),C'
15-2, #QLB3
R2,NBPtr
15, #QLB5
OH
R2,BPtr

OH

IF CLI,0(R1l),GE,C'0',6AND,
CLI,O(R1l) ,LE,C'9’
oI Flag,Numeric
ENDIF ,

IF CLI,O0O(R1l),LT,C'0',OR,
CLI,O(R1l) ,GT,C'9"
NI Flag,X’ FF’' -Numeric
ENDIF ,

+ + + +

+#Q@LB6

+ + + +

+#@LB9

+#QLB8

CLI
BRC
CLI
BRC
oI
DC

CLI
BRC
CLI
BRC
DC
NI
DC

O(R1),C'O’
15-11,#QLB6
O(R1),C'9’
15-13,#QLB6
Flag,Numeric
OH

O(R1),C'O"’

4,#QLBS

O(R1),C'9"’

15-2, #@LB8

OH
Flag,X'FF'-Numeric
OH

IF (CLI,O(R1l),GT,C'

Note use of
optional

surrounding
parentheses

') IORI

(LTR,R4,R4,NZ) ,AND,

—> (CLC, SpecChar (2) ,EQ,0(R4)),

ANDIF,

(TM,Flag,FlagBit,NZ) ,AND,
(CLM,R15,B'0011',LT,Limit) ,OR,
(ICM,R2,B'1111',0ffset, 2)

oI
ENDIF

4

Flag,Passed

CLI
BRC
LTR
BRC
CLC
BRC
+#QLB11 DC
™
BRC
CLM
BRC
ICM
BRC
+#QLB12 DC
oI
+#QLB10 DC

+ 4+ + + + +

+ 4+ + + + +

O(R1),C' '
2,#QLB11

R4 ,R4

15-7,#QLB10
SpecChar (2) ,0 (R4)
15-8,#QLB10

OH

Flag,FlagBit
15-7,#QLB10
R15,B'0011"',Limit
4,#QLB12
R2,B'1111"' ,0ffset
15-8,#QLB10

OH

Flag,Passed

OH

IF (CLI,O(R1l),GT,C' '),OR,
(LTR,R4,R4,NZ) ,AND,
(CLC,SpecChar(2) ,EQ,0(R4)),

ORIF,
(TM,Flag,FlagBit,NZ) ,AND,
(CLM,R15,B'0011',LT,Limit) ,OR,
(ICM,R2,B'1111"' ,0ffset,2)
oI Flag,Passed
ENDIF ,

CLI
BRC
LTR
BRC
CLC
BRC
+#@LB13 DC
™
BRC
CLM
BRC
ICM
BRC
+#QLB14 DC
OI
+#@LB15 DC

+ + + + + +

+ 4+ + + + +

O(R1),C' '
2,#QLB14

R4 ,R4

15-7,#Q@LB13
SpecChar (2) ,0 (R4)
8,#@LB14

OH

Flag,FlagBit
15-7,#@LB15
R15,B'0011"',Limit
4,#QLB14
R2,B'1111"' ,O0ffset
15-8, #@LB15

OH

Flag,Passed

OH

IF — Nesting With ELSEIF

IF (CLI,O(R1l),EQ,C'0')
LA R15,12
ELSE ,
IF (CR,R2,EQ,R3)
LA R15,16
ELSE ,
IF CLC,=Y(Big),GT,Size
LA R15,24
ELSE ,
XR R15,R15
ENDIF ,
ENDIF ,
ENDIF ,

IF (CLI,O(R1l),EQ,C'0"')
LA R15,12
ELSEIF (CR,R2,EQ,R3)
LA R15,16
ELSEIF CLC,=Y (Big) ,GT,Size
LA R15,24
ELSE ,
XR R15,R15
ENDIF ,

DO INF

DO UNTIL or FROM, TO, BY

DO WHILE

Logic
False
Logic
True
Logic
True

4“Il'hkbe

DO — Loop Terminator Generation

Type Keywords Other Conditions Result
Simple None ONCE parameter or no No terminator
parameters (null comma)

Infinite loop Neither FROM, INF parameter BC 15
WHILE, nor UNTIL BRC 15

Explicit FROM, plus TO BXH/BRXH parameter BXH, BRXH

Specification and/or BY BXLE/BRXLE parameter BXLE, BRXLE

Counting FROM only Two or three values BCT, BCTR

BRCT, BRCTR

Backward FROM, TO and BY FROM and TO numeric, BXH

Indexing FROM value > TO value BRXH

Backward FROM BY numeric and less than zero | BXH

Indexing BY BRXH

Forward All other BXLE

Indexing combinations BRXLE

DO — Register Initialization

Value Given Instruction Generated
None None (passed in)

Zero SR Rx,Rx

0 to 4095 LA Rx,value

-32768 to —1 or 4096 LHI Rx,value or

to 32767 LH Rx,=H'value’

Other numbers L Rx,=F'value’

(value) LR Rx,value

Other L Rx,Other

JAS R14,ProcessInput JAS R14 ,ProcessInput

ENDDO |,
Infinite
DO INF +#Q@LB18 DC OH

JAS R1l4,ProcessTillDead JAS R1l4,ProcessTillDead

ENDDO + BRC 15,#@LB18

14

DO — Backward Index (Implied BXH)

DO FROM=(R1,100) ,TO=(R5,1),

BY=(R4,-1)
STC R1,0(R1,R2)
ENDDO

DO FROM=(R1,100) ,BY=(R5,-1)
STC R1,0(R1,R2)
ENDDO ,

.|.
+
+
+#QLB38

+#QLB39
+

+
+
+#QLB41

+#QLB42
+

LA
LA
LHI
DC
STC

DC
BRXH

LHI
DC
STC
DC
BRXH

R1,100

R5,1

R4,-1

OH

R1,0 (R1,R2)
OH
R1,R4,#@LB38

R1,100
R5,-1
OH

R1,0(R1,R2)
OH
R1,R5, #QLB41

DO FROM=(R1l,1) ,TO=(R5,100),

BY=(R4,1)
STC R1,0(R1,R2)
ENDDO ,

DO FROM=(R1l,ArrayFirst),
TO=(R5,Arraylast),
BY=(R4 ,=A (EntryLen))

JAS R14 ,ProcessEntry

ENDDO |,

+
+
+
+#QLB47

+#QLB48
+

+
+
+
+#QLB44

+#QLB45
+

LA R1,1
LA R5,100
LA R4,1
DC 0H

STC R1,0(R1,R2)
DC 0H
BRXLE R1,R4,#QLB47

L Rl ,ArrayFirst
L R5 ,Arraylast

L R4 ,=A (EntryLen)
DC OH

JAS R14 ,ProcessEntry
DC OH
BRXLE R1,R4,#QLB44

| recommend the use of explicit BXH/BXLE specification

DO BXLE,FROM=(R1l,1) ,TO=(R15,100), 4+ LA R1,1
BY=(R14,1) + LA R15,100
STC R1,0(R1,R2) + LA R14,1
ENDDO |, +#Q@LB32 DC OH

STC R1,0(R1,R2)
+#QLB33 DC OH

+ BRXLE R1,R14,#QLB32
DO BXH,FROM=(R1l,Arraylast), + L Rl,Arraylast
TO=(R5,ArrayFirst), + L RS ,ArrayFirst
BY=(R4,=A (-EntryLen)) + L R4 ,=A (-EntryLen)
JAS R1l4,ProcessEntry +#QLB35 DC OH
ENDDO JAS R14 ,ProcessEntry

’

+#QLB36 DC OH
+ BRXH R1,R4,#QLB35

LHI RO ,MaxItems
DO FROM=(RO)
A R14,0(,R1)
LA R1,4(,R1)
ENDDO |,

DO FROM=(RO,MaxItems)
A R14,0(,R1)
LA R1,4 (,R1)

ENDDO ,

+#Q@LB20

+#@LB21
+

+
+#@LB23

+#QLB24
+

LHI
DC

g g

DC
BRCT

DC

E g

DC
BRCT

RO ,MaxItems
OH
R14,0(,R1)
R1,4(,R1)
OH

RO, #@LB20

RO ,MaxItems
OH
R14,0(,R1)
R1,4(,R1)
OH

RO, #@LB23

DO WHILE=(CLI,O(R1l),6LE,C'

AHI
ENDDO

DO UNTIL=(CLI,O(R1l),GT,C'

AHI
ENDDO

’

’

R1,1

R1,1

")

")

.|.
+#QLB51

+#QLB50
+
+

+#QLB55

+#Q@LB56
+
+

BRC
DC
AHI
DC
CLI
BRC

DC
AHT
DC
CLI
BRC

15, #@LB50
OH

R1,1

0H
0(R1l),C' '
13, #QLB51

0H
R1,1

OH

0(R1l),C' '
15-2, #@QLB55

DO — Combining Other Keywords With

While and/or Until

DO FROM=(RO),
WHILE=(CLI,O(R1l) ,LE,C' ')
AHI R1,1
ENDDO ,

DO WHILE=(CLI,O(R1l) ,LE,C' '),
UNTIL=(LTR,R15,R15,N2Z)
AHI R1,1
JAS R14,ProcessChar
ENDDO |,

+#Q@LB60
+
+

+#QLB63
+
+#QLB59

+#QLB65
+
+

+#QLB68
+
+
+#QLB64

DC
CLI
BRC
AHT
DC
BRCT
DC

DC
CLI
BRC
AHT
JAS
DC
LTR
BRC
DC

0H

0(R1l),C'
15-13, #QLB59
R1,1

0H

RO, #QLB60

OH

0H

0(R1l),C'
15-13, #QLB64
R1,1

R14 ,ProcessChar

OH

R15,R15
15-7,#QLB65
OH

DO — Demand lteration

ITERATE [do_ | abel]

OUTR DO INF,LABEL=0OUTR
JAS R14,GetStmt
DOEXIT LTR,R15,R15,NZ
DO FROM=(RO)
JAS R14,ProcessKwd
IF LTR,R15,R15,NZ
ITERATE OUTR

ENDIF ,
AHI R1,1
ENDDO |,
JAS R14 ,PutResults
ENDDO |,

+#QLB89

+
+
+#QLB93

+
+
+
+#QLB95

+#QLB94
+

+
+#QLB88S

DC
JAS
LTR
BRC
DC
JAS
LTR
BRC
BRC
DC
AHI
DC
BRCT
JAS
BRC
DC

OH

R14 ,GetStmt
R15,R15
7,#QLB88

OH

R14 ,ProcessKwd
R15,R15
15-7,#QLB95
15, #@LB89

OH

R1,1

OH

RO, #QLB93

R14 ,PutResults
15, #@LB89

OH

DO — Demand Exit

DOEXIT conditions[,DO=do_| abel] +#QLB77 DC OH
ASMLEAVE [do_| abel] +#QLB82 DC OH
+ CLI O(R1),C'
+ BRC 2,#QLB81

JAS R14,ProcessChar

LTR R15,R15
OUTR DO UNTIL=(LTR,R15,R15,NZ)

+ BRC 15-7,#QLB86
DO FROM=(RO) o MVI FootPrint,C'C'
DOEXIT CLI,O(R1l),GT,C + BRC 15,#QLB76
JAS R14,ProcessChar +#QLB86 DC OH
IF LTR,R15,R15fNZ AHI R1,1
MVI FootPrint,C'C' +#QLB83 DC OH
ASMLEAVE OUTR + BRCT RO, #QLB82
ENDIF , +#QLB81 DC OH
AHI R1,1 JAS R14,ProcessKwd
ENDDO , + LTR R15,R15
JAS R14 ,ProcessKwd + BRC 15-7,#QLB77
ENDDO ,

+#QLB76 DC OH

ProcessKwds DO ,
JAS R14,GetNextKwd

ASMLEAVE ProcessKwds
ITERATE ProcessKwds

ENDDO |,

DO LABEL=ProcessKwds
JAS R14 ,GetNextKwd

ASMLEAVE ProcessKwds
ITERATE ProcessKwds

ENDDO |,

Do for keyword processing
Get next keyword

Finished with keywords
Process next keyword

EndDo for keyword processing

Do for keyword processing
Get next keyword

Finished with keywords
Process next keyword

EndDo for keyword processing

Logic 1

Logic 2

CASENTRY Rx
CASE 1

Logic 1 Logic m
CASE 2

Logic 2

Notes:

) *Values in register x are powers of 2 (i.e., 1s, 2s, 4s, 8, 16s, etc.).
CASE m : . . :

R «Control passed via branch table. Very efficient for processing
ENDCASE many uniformly distributed numeric values.

*VValue of zero not supported (unfortunately).
*RO destroyed when relative branch used.

CASENTRY R15
CASE 1

BAS R14 ,HandleCasel
CASE 2

BAS R14 ,HandleCase?2
CASE 5

BAS R14 ,HandleCaseb
ENDCASE ,

+ 4+ +

+#Q@LB131
+#QLB132

+
+
+#QLB133
+

+
+#QLB134

#QLB129

+
+
+
+
+
+
+
+
+

#QLB130

SLA

BCR
DC
DC
BAS

BCR
DC
BAS

BCR
DC
BAS

BCR
DC
DC
DC
DC
DC
DC
DC

R15,2-0
R15,#Q@LB131
R15,0(,R15)
15,R15

A (#QLB129)

OH
R14,HandleCasel
R15, #Q@LB129
15,R15

OH
R14,HandleCase?2
R15, #Q@LB129
15,R15

OH
R14,HandleCaseb
R15, #Q@LB129
15,R15

A (#@QLB130)

A (#QLB132)

A (#QLB133)

A (#@LB130)

A (#@QLB130)

A (#@LB134)

OH

CASE — Relative Branch

CASENTRY R15 + SLA R15,2-0
i LR 0,R15
CASE 1 + CNOP 0,4
JAS R14 ,HandleCasel + BRAS R15,*+8
+ DC A(#QLB118-%*)
CASE 2 + AL R15,0 (R15,0)
JAS R14 ,HandleCase?2 + ALR R15,0
CASE 5 + BR R15
+#QLB120 DC OH
JAS R14 ,HandleCase5 e JAS R14,HandleCasel
ENDCASE , + BRC 15,#QLB119

+#QLB121 DC OH

JAS R14 ,HandleCase?2
+ BRC 15,#@LB119
+#Q@LB122 DC OH

JAS R14 ,HandleCaseb
+#QLB118 BRC 15, #QLB119
+ BRC 15,#@LB120

BRC 15, #QLB121

BRC 15, #QLB119

Note: When SYSSTATE ARCHLVL=2 is in effect, +
+
+ BRC 15,#QLB119
+
+

the blue fragment simplifies to:

BRC 15, #QLB122

+ LARL O0,#QLB118 #Q@LB119 DC OH

CASE - Based Branch (Vector=B)

CASENTRY R15, POWER=2,VECTOR=B + BC 15,#Q@QLB108 (R15)
CASE 4 +#QLB110 DC OH

MVI Severity,C'W' MVI Severity,C'W’
CASE 8,12 + BC 15, #QLB109

MVI Severity,C'E' S CEECEE 381 gzverity,C'E'
CASE 16,20,24 + BC 15,#QLB109

MVI Severity,C'S' +#@LB112 DC 0H
ENDCASE , MVI Severity,C'S'

+#Q@LB108 BC 15, #@LB109
BC 15, #@QLB110
BC 15, #QLB111
BC 15, #@LB111
BC 15, #QLB112
BC 15, #QLB112
BC 15, #QLB112
+#Q@LB109 DC 0H

+ 4+ + + + +

CASE - Relative Branch (Vector=B)

CASENTRY R15, POWER=2,VECTOR=B + LR 0,R15
CASE 4 + CNOP 0,4
: N + BRAS R15,*+8
MVI Severity,C'W i DC A (#QLB123-*)
CASE 8,12 + AL R15,0 (R15,0)
MVI Severity,C'E' + ALR R15,0
+ BR R15
CASE 16,20,24 +#@LB125 DC OH
MVI Severity,C'S' MVI Severity,C'W'
ENDCASE + BRC 15,#@LB124
! +#QLB126 DC 0H
MVI Severity,C'E'
+ BRC 15,#QLB124
+#@QLB127 DC OH
Note: The VECTOR= keyword is ignored for LaveE ECREEEL ST, e

+#QLB123 BRC 15,#QLB124
BRC 15, #QLB125
BRC 15, #QLB126
BRC 15, #QLB126
BRC 15,#@QLB127
BRC 15,#@LB127
BRC 15, #QLB127
+#QLB124 DC OH

relative branch expansions

Note: When SYSSTATE ARCHLVL=2 is in effect,
the blue fragment simplifies to:

+ + + + + +

+ LARL O0,#QLB123

Sl Logic2
True

Logic m

True

Otherwise

SELECT CLI,O(R1l),EQ
WHEN C'A’
LHI R15,12

WHEN C'B'

LHI R15,16
WHEN C'C'

LHI R15,24
WHEN C'D'

LHI R15,8
OTHRWISE ,

XR R15,R15
ENDSEL ,

+
+

+
+#@LB145
+
+

+
+#QLB147
+
+

+
+#QLB149
+
+

+
+#QLB151

+#QLB144

CLI
BRC
LHI
BRC
DC

CLI
BRC
LHI
BRC
DC

CLI
BRC
LHI
BRC
DC

CLI
BRC
LHI
BRC
DC

XR

DC

0(R1l),C'A"
15-8, #@LB145
R15,12

15, #QLB144
0H
0(R1l),C'B'
15-8,#Q@LB147
R15,16

15, #QLB144
0H
0(R1l),C'C'
15-8,#@LB149
R15,24

15, #QLB144
0H
0(R1l),C'D"
15-8, #QLB151
R15,8

15, #QLB144
0H

R15,R15

0H

SELECT

WHEN CLI,O(R1l) ,EQ,O

LHI R15,12
WHEN CLI,O(R2),EQ,1
LHI R15,16
WHEN CLI,O (R3),EQ,?2
LHI R15,24
WHEN CLI,O(R4),EQ,9
LHI R15,8
OTHRWISE ,
XR R15,R15
ENDSEL

’

’

+
+

+
+#@LB136
+
+

+
+#QLB138
+
+

+
+#QLB140
+
+

+
+#QLB142

+#QLB135

CLI
BRC
LHI
BRC
DC

CLI
BRC
LHI
BRC
DC

CLI
BRC
LHI
BRC
DC

CLI
BRC
LHI
BRC
DC

XR

DC

0(R1),0
15-8,#@LB136
R15,12

15, #@LB135
0H

0(R2),1
15-8,#@LB138
R15,16

15, #QLB135
0H

0(R3),2
15-8, #@LB140
R15,24

15, #QLB135
0H

0(R4),9
15-8, #QLB142
R15,8

15, #QLB135
0H

R15,R15

0H

Defeating the Mutual-Exclusivity of the
WHEN Clause

WHEN clauses are always SELECT ,
mutually exclusive. This can lead ~ WHEN CLI,0(R1),EQ,0
. . oI FLAG1, Zero
to duplicated logic. oT FLAG2,SingleDigit
WHEN CLI,O(R1l),LT,10
One of my enhancements adds or FLAG2, SingleDigit

NEXTWHEN. When encountered, gnpseL
It passes control to the next WHEN

14

(or OTHRWISE) clause. SELECT |,

WHEN CLI,O(R1l),EQ,O
NEXTWHEN may appear oI FLAG1, Zero
anywhere within a WHEN clause NEXTWHEN

WHEN CLI,O(R1l),LT,10
oI FLAG2,SingleDigit
ENDSEL |,

(even from inside other constructs
such as IF or DO).

SEARCH Macro Set

Loop not finished

v

STRTSRCH

—O—b Logic A

STRTSRCH
Logic A
EXITIF (p)
Logic B
ORELSE
Logic C
ENDLOOP
Logic D
ENDSRCH

EXITIF ORELSE ENDLOOP
0 Logic C 0 Logic D
True
Logic B
Notes:

*STRTSRCH has same loop control options as DO.

*ENDLOOP (Logic D) differentiates SEARCH from DO.
*DOEXIT and ASMLEAVE go to ENDLOOP logic.

*EXITIF and ORELSE are optional.

sEach EXITIF (except the last) must be followed by an ORELSE.

Any mature product has obsolete commands/features. They
tend to be created to fix a specific problem. Later, that same
problem is addressed in a more generalized way and the
“stop-gap” solution becomes obsolete.

At one time SEARCH was necessary to address deficiencies
In the more general DO macro set.

No simple DO.

No DOEXIT support for compound tests.

No DOEXIT/ASMLEAVE from inner constructs or nested DOs.

These and other similar deficiencies have all been resolved.

SEARCH has no direct counterpart in other structured
languages, making it undesirable for general-purpose use.

THE END

	Structured Assembler Language Programming Using HLASM
	An Opportunity to Share
	Structured Programming Disciplines
	Other Structured Programming Disciplines Not Discussed
	The Beginning of an Evolution
	GOTO Density Metric
	Relating GOTO Use to Software Quality
	Use of GOTO in Modern Programming Languages – Abolished!
	Unstructured Programs:Become Unnecessarily Complex
	Structured Programs:Much Easier to Understand
	Structured Programming Using Very Old Languages
	Structured Programming Entropy in Very Old Languages
	Further Stacking the “Deck” Against Mainframe Assembler Language
	Nesting. The Most Important Element of Overall Program Structure
	Well-written, Yet “Flat” Program Organization
	Hierarchical Program Organization
	Structured Programming Macros (SPMs)
	SPMs Enforce Program Structure
	SPMs Eliminate GOTO Statements from Program Source
	SPMs Eliminate Extraneous Labels
	SPMs Eliminate Out-of-line Logic Paths
	SPMs Enhance Source Code Readability
	SPMs Provide Uniformity and Standardization
	Which is More Readable/Maintainable?
	Building Blocks
	Building Blocks – Single Instruction
	Building Blocks – Simple DO
	Building Blocks – Simple DO Logic
	Building Blocks – Simple DO Mainline
	Building Blocks – Simple DO Looping
	Building Blocks – Nested Simple DO
	Building Blocks – More DO Keywords
	Building Blocks – SELECT
	Building Blocks – SELECT
	Building Blocks – CASE
	Building Blocks – CASE
	Building Blocks – IF
	Building Blocks – IF
	Building Blocks – Subroutine
	Building Blocks – Subroutine
	Combining SPM Condition Tests With Instructions That Set the CC
	Combining SPM Condition Tests With Macros That Set the CC
	Enabling Use of the SPMs
	Customizing the Macro Names
	Getting SPMs Inside Macros to Print
	The Source Record Layout I Use
	The Source Record Layout I Use
	Some of My Rules of Thumb
	Some of My Rules of Thumb
	Avoidance of Excessive Indentation
	Challenges Caused by Assembler Language Syntax Restrictions
	Assembler Language Programming Resources I’ve Made Public
	STKSAVE Macro
	FLOWASM HLASM Exit
	FLOWASM HLASM Exit
	HLASM Listing With “Flow” Bars
	Structured Programming Macro Sets
	IF Macro Set
	IF – Mnemonics and Complements
	IF – Basic Tests
	IF – Combined Tests
	IF – Logical Grouping With ANDIF
	IF – Logical Grouping With ORIF
	IF – Nesting With ELSEIF
	DO Macro Set
	DO – Loop Terminator Generation
	DO – Register Initialization
	DO – Basic Formats
	DO – Backward Index (Implied BXH)
	DO – Forward Index (Implied BXLE)
	DO – Explicit BXH/BXLE
	DO – Counting
	DO – While and Until
	DO – Combining Other Keywords With While and/or Until
	DO – Demand Iteration
	DO – Demand Exit
	DO – Alternate Labeling Method
	CASE Macro Set
	CASE – Based Branch
	CASE – Relative Branch
	CASE – Based Branch (Vector=B)
	CASE – Relative Branch (Vector=B)
	SELECT Macro Set
	SELECT – Global Test
	SELECT – Unique Tests
	Defeating the Mutual-Exclusivity of the WHEN Clause
	SEARCH Macro Set
	Why I Never Use SEARCH

